Activity

Filter

Cancel
Date Panel Item Activity
50 actions
Mendeliome v1.1840 AFF2 Zornitza Stark Phenotypes for gene: AFF2 were changed from Mental retardation, X-linked, FRAXE type 309548 to Intellectual disability, X-linked, FRAXE type, MIM#309548
Mendeliome v1.1838 AFF2 Zornitza Stark edited their review of gene: AFF2: Changed phenotypes: Intellectual disability, X-linked, FRAXE type 309548; Changed mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v1.1140 SOX11 Zornitza Stark edited their review of gene: SOX11: Added comment: Over 40 additional individuals reported, e.g. PMID 35341651. The phenotype that has emerged over time is distinct from patients with mutations in ARID1B (614556) and Coffin-Siris syndrome-1 (135900). Patients with IDDMOH tend to be microcephalic and have ocular motor apraxia, abnormal eye morphology, or hypogonadotropic hypogonadism.; Changed publications: 29459093, 24886874, 33086258, 33785884, 35642566, 35341651
Mendeliome v1.834 SLC30A9 Lucy Spencer gene: SLC30A9 was added
gene: SLC30A9 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC30A9 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC30A9 were set to 37041080
Phenotypes for gene: SLC30A9 were set to Birk-Landau-Perez syndrome (MIM#617595)
Review for gene: SLC30A9 was set to GREEN
Added comment: PMID:37041080 - 2 families previously reported and this paper describes 4 more with biallelic SLC30A9 variants. Original 2 families: 6 affected members all hom for Ala350del, and 1 affected member chet for 2 frameshifts. 4 families from this paper: 2 families have the same homozygous missense (Gly418Val), family 3 has 4 affected sibs hom for Ala350del, family 4 1 affected chet for a frameshift and a synonymous. So 2 fams homs for Ala350del and 2 fams hom for Gly418Val.
All have Brik-Landau-Perez syndrome: all with ID, movement disorder and dystonia, and many with oculomotor apraxia, renal abnormalitie, ptosis, some had hearing impairment.
Sources: Literature
Mendeliome v1.781 MKL2 Dean Phelan gene: MKL2 was added
gene: MKL2 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MKL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MKL2 were set to PMID: 37013900
Phenotypes for gene: MKL2 were set to Neurodevelopmental disorder (MONDO:0700092), MKL2-related
Mode of pathogenicity for gene: MKL2 was set to Other
Review for gene: MKL2 was set to AMBER
Added comment: PMID: 37013900
- de novo missense variants in MKL2 (now known as MRTFB) were identified in two patients with mild dysmorphic features, intellectual disability, global developmental delay, speech apraxia, and impulse control issues. Functional studies in a Drosophila model suggest a gain of function disease mechanism.
Sources: Literature
Mendeliome v1.625 NPTX1 Ain Roesley gene: NPTX1 was added
gene: NPTX1 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: NPTX1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: NPTX1 were set to 34788392; 35288776; 35285082; 35560436
Phenotypes for gene: NPTX1 were set to cerebellar ataxia MONDO#0000437, NPTX1-related
Review for gene: NPTX1 was set to GREEN
gene: NPTX1 was marked as current diagnostic
Added comment: PMID:34788392
5 families with multigenerational segregations - late onset ataxia
4 families with p.(Gly389Arg) + 1x p.(Glu327Gly)
functional studies done

Note: case report of a family member published elsewhere (PMID:35288776)

PMID:35285082
1x de novo in a male with late-onset, slowly progressive cerebellar ataxia, oculomotor apraxia, choreiform dyskinesias, and cerebellar cognitive affective syndrome
p.(Arg143Leu)

PMID:35560436
1x de novo in a female with early-onset ataxia and cerebellar atrophy since infancy
p.(Gln370Arg)
Sources: Literature
Mendeliome v1.424 RAX2 Zornitza Stark Phenotypes for gene: RAX2 were changed from Cone-rod dystrophy 11, MIM# 610381 to Cone-rod dystrophy 11, MIM# 610381; Retinitis pigmentosa-95 (RP95), MIM#620102
Mendeliome v1.423 RAX2 Zornitza Stark edited their review of gene: RAX2: Changed phenotypes: Cone-rod dystrophy 11, MIM# 610381, Retinitis pigmentosa-95 (RP95), MIM#620102
Mendeliome v1.257 KIF5B Chirag Patel gene: KIF5B was added
gene: KIF5B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KIF5B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KIF5B were set to PMID: 35342932
Phenotypes for gene: KIF5B were set to Kyphomelic dysplasia, no OMIM #
Review for gene: KIF5B was set to GREEN
Added comment: 4 individuals with Kyphomelic dysplasia (severe bowing of the limbs, sharp angulation of the femora and humeri, short stature, narrow thorax, distinctive facial features, and neonatal respiratory distress. WES found de novo heterozygous missense variants in KIF5B encoding kinesin-1 heavy chain. All variants involved conserved amino acids in or close to the ATPase activity-related motifs in the catalytic motor domain of the KIF5B protein. No functional studies of variants. Previously 2 animal model experiments showed that loss of function of KIF5B can cause kyphomelic dysplasia. First, chondrocyte-specific knockout of Kif5b in mice was shown to produce a disorganized growth plate, leading to bone deformity. Second, double mutants disrupting the two zebrafish kif5b caused abnormal skeletal morphogenesis and the curvature of Meckel's and ceratohyal cartilages.
Sources: Literature
Mendeliome v1.241 SMG9 Zornitza Stark Phenotypes for gene: SMG9 were changed from Heart and brain malformation syndrome, MIM# 616920 to Heart and brain malformation syndrome, MIM# 616920; Neurodevelopmental disorder with intention tremor, pyramidal signs, dyspraxia, and ocular anomalies, MIM# 619995
Mendeliome v1.239 SMG9 Zornitza Stark edited their review of gene: SMG9: Added comment: PMID 35087184: 5 individuals from 3 unrelated Finnish families reported with same homozygous missense variant (founder effect) and predominantly neurological phenotype. Uncertain if this is a distinct disorder or part of a spectrum with the previously reported cases.; Changed publications: 27018474, 31390136, 35087184; Changed phenotypes: Heart and brain malformation syndrome, MIM# 616920, Neurodevelopmental disorder with intention tremor, pyramidal signs, dyspraxia, and ocular anomalies, MIM# 619995
Mendeliome v1.130 SLC30A7 Naomi Baker gene: SLC30A7 was added
gene: SLC30A7 was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: SLC30A7 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SLC30A7 were set to PMID: 35751429
Phenotypes for gene: SLC30A7 were set to Joubert syndrome (MONDO:0018772), SLC30A7-related
Review for gene: SLC30A7 was set to AMBER
Added comment: PMID: 35751429: Two individuals reported with de novo variants, one missense and one delins resulting in missense. The first individual is a female with history of unilateral postaxial polydactyly, classic molar tooth sign on MRI, macrocephaly, ataxia, ocular motor apraxia, neurodevelopmental delay, and precocious puberty. The second individual had bilateral postaxial polydactyly, molar tooth sign, macrocephaly, developmental delay, and an extra oral frenulum. No functional studies reported.
Sources: Literature
Mendeliome v0.13224 RAX2 Zornitza Stark Marked gene: RAX2 as ready
Mendeliome v0.13224 RAX2 Zornitza Stark Gene: rax2 has been classified as Green List (High Evidence).
Mendeliome v0.13224 RAX2 Zornitza Stark Phenotypes for gene: RAX2 were changed from to Cone-rod dystrophy 11, MIM# 610381
Mendeliome v0.13223 RAX2 Zornitza Stark Publications for gene: RAX2 were set to
Mendeliome v0.13222 RAX2 Zornitza Stark Mode of inheritance for gene: RAX2 was changed from Unknown to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.13221 RAX2 Zornitza Stark reviewed gene: RAX2: Rating: GREEN; Mode of pathogenicity: None; Publications: 15028672, 25789692, 30607024; Phenotypes: Cone-rod dystrophy 11, MIM# 610381; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.12759 TTC19 Zornitza Stark edited their review of gene: TTC19: Added comment: Mitochondrial complex III deficiency nuclear type 2 is an autosomal recessive severe neurodegenerative disorder that usually presents in childhood, but may show later onset, even in adulthood. Affected individuals have motor disability, with ataxia, apraxia, dystonia, and dysarthria, associated with necrotic lesions throughout the brain. Most patients also have cognitive impairment and axonal neuropathy and become severely disabled later in life. The disorder may present clinically as spinocerebellar ataxia or Leigh syndrome, or with psychiatric disturbances.

At least 4 unrelated families reported.; Changed publications: 21278747, 23532514, 24368687, 24397319
Mendeliome v0.12711 MDFIC Belinda Chong gene: MDFIC was added
gene: MDFIC was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: MDFIC was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MDFIC were set to 35235341
Phenotypes for gene: MDFIC were set to Central conducting lymphatic anomaly with lymphedema
Review for gene: MDFIC was set to GREEN
Added comment: Central conducting lymphatic anomaly (CCLA), characterized by the dysfunction of core collecting lymphatic vessels including the thoracic duct and cisterna chyli, and presenting as chylothorax, pleural effusions, chylous ascites, and lymphedema, is a severe disorder often resulting in fetal or perinatal demise.

Seven individuals with CCLA from six independent families. Clinical manifestations of affected fetuses and children included nonimmune hydrops fetalis (NIHF), pleural and pericardial effusions, and lymphedema. Generation of a mouse model of human MDFIC truncation variants revealed that homozygous mutant mice died perinatally exhibiting chylothorax.
Sources: Literature
Mendeliome v0.10800 PIK3R5 Zornitza Stark Phenotypes for gene: PIK3R5 were changed from to Ataxia-oculomotor apraxia 3, OMIM #615217
Mendeliome v0.10796 PIK3R5 Zornitza Stark reviewed gene: PIK3R5: Rating: RED; Mode of pathogenicity: None; Publications: 22065524; Phenotypes: Ataxia-oculomotor apraxia 3, OMIM #615217; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10369 APTX Zornitza Stark Phenotypes for gene: APTX were changed from to Ataxia, early-onset, with oculomotor apraxia and hypoalbuminaemia MIM#208920
Mendeliome v0.10366 APTX Zornitza Stark reviewed gene: APTX: Rating: GREEN; Mode of pathogenicity: None; Publications: 30986824, 26256098, 11586299; Phenotypes: Ataxia, early-onset, with oculomotor apraxia and hypoalbuminaemia MIM#208920; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.10312 ADAMTS2 Zornitza Stark Phenotypes for gene: ADAMTS2 were changed from to Ehlers-Danlos syndrome, dermatosparaxis type (MIM# 225410)
Mendeliome v0.10309 ADAMTS2 Zornitza Stark reviewed gene: ADAMTS2: Rating: GREEN; Mode of pathogenicity: None; Publications: 30071989, 26765342, 28306229; Phenotypes: Ehlers-Danlos syndrome, dermatosparaxis type (MIM# 225410); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7917 ADAMTSL2 Zornitza Stark Phenotypes for gene: ADAMTSL2 were changed from to Geleophysic dysplasia 1, MIM# 231050; Dermatosparaxic Ehlers Danlos syndrome
Mendeliome v0.7914 ADAMTSL2 Zornitza Stark reviewed gene: ADAMTSL2: Rating: GREEN; Mode of pathogenicity: None; Publications: 33369194, 26879370, 21415077; Phenotypes: Geleophysic dysplasia 1, MIM# 231050, Dermatosparaxic Ehlers Danlos syndrome; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Mendeliome v0.5830 RAX Zornitza Stark Marked gene: RAX as ready
Mendeliome v0.5830 RAX Zornitza Stark Gene: rax has been classified as Green List (High Evidence).
Mendeliome v0.5830 RAX Zornitza Stark Phenotypes for gene: RAX were changed from Microphthalmia, isolated 3, MIM# 611038 to Microphthalmia, isolated 3, MIM# 611038
Mendeliome v0.5829 RAX Zornitza Stark Phenotypes for gene: RAX were changed from to Microphthalmia, isolated 3, MIM# 611038
Mendeliome v0.5828 RAX Zornitza Stark Publications for gene: RAX were set to
Mendeliome v0.5827 RAX Zornitza Stark Mode of inheritance for gene: RAX was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5826 RAX Zornitza Stark reviewed gene: RAX: Rating: GREEN; Mode of pathogenicity: None; Publications: 14662654, 18783408, 30811539, 24033328, 22524605; Phenotypes: Microphthalmia, isolated 3, MIM# 611038; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.5487 PIGH Zornitza Stark edited their review of gene: PIGH: Added comment: Further three families reported.

Common clinical features include developmental delay/intellectual disability and hypotonia. Variable clinical features include seizures, autism spectrum disorder, apraxia, severe language delay, dysarthria, feeding difficulties, facial dysmorphisms, microcephaly, strabismus, and musculoskeletal anomalies.; Changed publications: 29573052, 29603516, 33156547
Mendeliome v0.5229 PRKAR1B Konstantinos Varvagiannis gene: PRKAR1B was added
gene: PRKAR1B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRKAR1B was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PRKAR1B were set to https://doi.org/10.1101/2020.09.10.20190314; 25414040
Phenotypes for gene: PRKAR1B were set to Global developmental delay; Intellectual disability; Autism; Attention deficit hyperactivity disorder; Aggressive behavior; Abnormality of movement; Upslanted palpebral fissure
Penetrance for gene: PRKAR1B were set to unknown
Review for gene: PRKAR1B was set to AMBER
Added comment: Please consider inclusion of this gene with amber rating pending publication of the preprint and/or additional evidence.

Marbach et al. (2020 - medRxiv : https://doi.org/10.1101/2020.09.10.20190314 - last author : C. Schaaf) report 6 unrelated individuals with heterozygous missense PRKAR1B variants.

All presented formal ASD diagnosis (6/6), global developmental delay (6/6) and intellectual disability (all - formal evaluations were lacking though). Additional features included neurologic anomalies (movement disorders : dyspraxia, apraxia, clumsiness in all, with tremor/dystonia or involuntary movements as single occurrences). Three displayed high pain tolerance. Regression in speech was a feature in two. Additional behavior anomalies included ADHD (4-5/6) or aggression (3/6). There was no consistent pattern of malformations, physical anomalies or facial features (with the exception of uplsanted palpebral fissures reported in 4).

3 different missense variants were identified (NM_00116470:c.1003C>T - p.Arg335Trp, c.586G>A - p.Glu196Lys, c.500_501delAAinsTT - p.Gln167Leu) with Arg355Trp being a recurrent one within this cohort (4/6 subjects). A possible splicing effect may apply for the MNV. All variants are absent from gnomAD and the SNVs had CADD scores > 24.

In all cases were parental samples were available (5/6), the variant had occurred as a de novo event.

Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes. As the authors comment, the RIβ subunit is primarily expressed in brain with higher expression in cortex and hypothalamus.

The functional consequences of the variants at cellular level were not studied.

Previous studies have demonstrated that downregulation of RIβ in murine hippocampal cultures, reduced phosphorylation of CREB, a transcription factor involved in long-term memory formation. The authors speculate that a similar effect on cAMP/PKA/CREB cascade may mediate the cognitive effects in humans. RIβ deficient mice also display diminished nociceptive pain, similar to the human phenotype. [Several refs provided].

The authors cite the study by Kaplanis et al (2020 - PMID: 33057194), where in a large sample of 31,058 trio exomes of children with developmental disorders, PRKAR1B was among the genes with significant enrichment for de novo missense variants. [The gene has a pLI score of 0.18 in gnomAD / o/e = 0.26 - so pLoF variants may not be deleterious].

Please note that a specific PRKAR1B variant (NM_002735.2:c.149T>G - p.Leu50Arg) has been previous reported to segregate with a late-onset neurodegenerative disorder characterized by dementia and/or parkinsonism within a large pedigree with 12 affected individuals [Wong et al 2014 - PMID: 25414040].
Sources: Literature
Mendeliome v0.5102 PRKACB Konstantinos Varvagiannis gene: PRKACB was added
gene: PRKACB was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRKACB was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PRKACB were set to 33058759
Phenotypes for gene: PRKACB were set to Postaxial hand polydactyly; Postaxial foot polydactyly; Common atrium; Atrioventricular canal defect; Narrow chest; Abnormality of the teeth; Intellectual disability
Penetrance for gene: PRKACB were set to unknown
Mode of pathogenicity for gene: PRKACB was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: PRKACB was set to GREEN
Added comment: Palencia-Campos et al (2020 - PMID: 33058759) report on the phenotype of 3 individuals heterozygous for PRKACA and 4 individuals heterozygous for PRKACB pathogenic variants.

The most characteristic features in all individuals with PRKACA/PRKACB mutation, included postaxial polydactyly of hands (6/7 bilateral, 1/7 unilateral) and feet (4/7 bilateral, 1/7 unilateral), brachydactyly and congenital heart defects (CHD 5/7) namely a common atrium or AVSD. Two individuals with PRKACA variant who did not have CHD had offspring with the same variant and an AVSD.

Other variably occurring features included short stature, limbs, narrow chest, abnormal teeth, oral frenula, nail dysplasia. One individual with PRKACB variant presented tumors.

Intellectual disability was reported in 2/4 individuals with PRKACB variant (1/4: mild, 1/4: severe). The 3 individuals with PRKACA variant did not present ID.

As the phenotype was overall suggestive of Ellis-van Creveld syndrome (or the allelic Weyers acrofacial dysostosis), although these diagnoses were ruled out following analysis of EVC and EVC2 genes.

WES was carried out in all.

PRKACA : A single heterozygous missense variant was identified in 3 individuals from 3 families (NM_002730.4:c.409G>A / p.Gly137Arg) with 1 of the probands harboring the variant in mosaic state (28% of reads) and having 2 similarly affected offspring. The variant was de novo in one individual and inherited in a third one having a similarly affected fetus (narrow thorax, postaxial polyd, AVSD).

PRKACB : 4 different variants were identified (NM_002731.3: p.His88Arg/Asn, p.Gly235Arg, c.161C>T - p.Ser54Leu). One of the individuals was mosaic for the latter variant, while in all other cases the variant had occurred de novo.

Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes.

The authors provide evidence that the variants confer increased sensitivity of PKA holoenzymes to activation by cAMP (compared to wt).

By performing ectopic expression of wt or mt PRKACA/B (variants studied : PRKACA p.Gly137Arg / PRKACB p.Gly235Arg) in NIH 3T3 fibroblasts, the authors demonstrate that inhibition of hedgehog signaling likely underlyies the developmental defects observed in affected individuals.

As for PRKACA, the authors cite another study where a 31-month old female with EvC syndrome diagnosis was found to harbor the aforementioned variant (NM_001304349.1:c.637G>A:p.Gly213Arg corresponding to NM_002730.4:c.409G>A / p.Gly137Arg) as a de novo event. Without additional evidence at the time, the variant was considered to be a candidate for this subject's phenotype (Monies et al 2019 – PMID: 31130284).
Sources: Literature
Mendeliome v0.5102 PRKACA Konstantinos Varvagiannis gene: PRKACA was added
gene: PRKACA was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: PRKACA was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PRKACA were set to 33058759; 31130284
Phenotypes for gene: PRKACA were set to Postaxial hand polydactyly; Postaxial foot polydactyly; Common atrium; Atrioventricular canal defect; Narrow chest; Abnormality of the teeth; Intellectual disability
Penetrance for gene: PRKACA were set to unknown
Mode of pathogenicity for gene: PRKACA was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: PRKACA was set to GREEN
Added comment: Palencia-Campos et al (2020 - PMID: 33058759) report on the phenotype of 3 individuals heterozygous for PRKACA and 4 individuals heterozygous for PRKACB pathogenic variants.

The most characteristic features in all individuals with PRKACA/PRKACB mutation, included postaxial polydactyly of hands (6/7 bilateral, 1/7 unilateral) and feet (4/7 bilateral, 1/7 unilateral), brachydactyly and congenital heart defects (CHD 5/7) namely a common atrium or AVSD. Two individuals with PRKACA variant who did not have CHD had offspring with the same variant and an AVSD.

Other variably occurring features included short stature, limbs, narrow chest, abnormal teeth, oral frenula, nail dysplasia. One individual with PRKACB variant presented tumors.

Intellectual disability was reported in 2/4 individuals with PRKACB variant (1/4: mild, 1/4: severe). The 3 individuals with PRKACA variant did not present ID.

As the phenotype was overall suggestive of Ellis-van Creveld syndrome (or the allelic Weyers acrofacial dysostosis), although these diagnoses were ruled out following analysis of EVC and EVC2 genes.

WES was carried out in all.

PRKACA : A single heterozygous missense variant was identified in 3 individuals from 3 families (NM_002730.4:c.409G>A / p.Gly137Arg) with 1 of the probands harboring the variant in mosaic state (28% of reads) and having 2 similarly affected offspring. The variant was de novo in one individual and inherited in a third one having a similarly affected fetus (narrow thorax, postaxial polyd, AVSD).

PRKACB : 4 different variants were identified (NM_002731.3: p.His88Arg/Asn, p.Gly235Arg, c.161C>T - p.Ser54Leu). One of the individuals was mosaic for the latter variant, while in all other cases the variant had occurred de novo.

Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes.

The authors provide evidence that the variants confer increased sensitivity of PKA holoenzymes to activation by cAMP (compared to wt).

By performing ectopic expression of wt or mt PRKACA/B (variants studied : PRKACA p.Gly137Arg / PRKACB p.Gly235Arg) in NIH 3T3 fibroblasts, the authors demonstrate that inhibition of hedgehog signaling likely underlyies the developmental defects observed in affected individuals.

As for PRKACA, the authors cite another study where a 31-month old female with EvC syndrome diagnosis was found to harbor the aforementioned variant (NM_001304349.1:c.637G>A:p.Gly213Arg corresponding to NM_002730.4:c.409G>A / p.Gly137Arg) as a de novo event. Without additional evidence at the time, the variant was considered to be a candidate for this subject's phenotype (Monies et al 2019 – PMID: 31130284).
Sources: Literature
Mendeliome v0.5060 AFF2 Zornitza Stark Phenotypes for gene: AFF2 were changed from to Mental retardation, X-linked, FRAXE type 309548
Mendeliome v0.5057 AFF2 Zornitza Stark reviewed gene: AFF2: Rating: GREEN; Mode of pathogenicity: None; Publications: 8334699, 21739600; Phenotypes: Mental retardation, X-linked, FRAXE type 309548; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Mendeliome v0.4386 LAMA1 Zornitza Stark Phenotypes for gene: LAMA1 were changed from to Cerebellar ataxia, intellectual disability, oculomotor apraxia, cerebellar cysts; Poretti Boltshauser syndrome MIM#615960
Mendeliome v0.3544 FLCN Zornitza Stark Phenotypes for gene: FLCN were changed from to Birt-Hogg-Dube syndrome (MIM#135150); Pneumothorax, primary spontaneous (MIM#173600)
Mendeliome v0.3541 FLCN Crystle Lee reviewed gene: FLCN: Rating: GREEN; Mode of pathogenicity: None; Publications: 17124507, 30586397, 31625278; Phenotypes: Birt-Hogg-Dube syndrome (MIM#135150), Pneumothorax, primary spontaneous (MIM#173600); Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Mendeliome v0.1521 SRPX2 Zornitza Stark Phenotypes for gene: SRPX2 were changed from to Rolandic epilepsy, mental retardation, and speech dyspraxia, MIM# 300643
Mendeliome v0.1517 SRPX2 Zornitza Stark reviewed gene: SRPX2: Rating: RED; Mode of pathogenicity: None; Publications: 16497722, 23933820, 23871722; Phenotypes: Rolandic epilepsy, mental retardation, and speech dyspraxia, MIM# 300643; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females
Mendeliome v0.1395 PNKP Zornitza Stark Phenotypes for gene: PNKP were changed from to Ataxia-oculomotor apraxia 4, MIM#616267; Microcephaly, seizures, and developmental delay, MIM#613402
Mendeliome v0.1386 PNKP Kristin Rigbye reviewed gene: PNKP: Rating: GREEN; Mode of pathogenicity: None; Publications: 31436889, 31707899; Phenotypes: Ataxia-oculomotor apraxia 4, Microcephaly, seizures, and developmental delay; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes
Mendeliome v0.0 RAX2 Zornitza Stark gene: RAX2 was added
gene: RAX2 was added to Mendeliome_VCGS. Sources: Expert Review Green,Victorian Clinical Genetics Services
Mode of inheritance for gene: RAX2 was set to Unknown
Mendeliome v0.0 RAX Zornitza Stark gene: RAX was added
gene: RAX was added to Mendeliome_VCGS. Sources: Expert Review Green,Victorian Clinical Genetics Services
Mode of inheritance for gene: RAX was set to Unknown