Activity

Filter

Cancel
Date Panel Item Activity
589 actions
Intellectual disability syndromic and non-syndromic v0.6057 FDXR Zornitza Stark edited their review of gene: FDXR: Added comment: Multiple reports of individuals with extra-ocular features, including ID and regression.; Changed rating: GREEN; Changed publications: 30250212, 29040572, 33348459, 37046037, 37481223; Changed phenotypes: Neurodevelopmental disorder with mitochondrial abnormalities, optic atrophy, and developmental regression, MIM# 620887, Auditory neuropathy and optic atrophy, MIM# 617717
Intellectual disability syndromic and non-syndromic v0.6055 SREBF2 Zornitza Stark gene: SREBF2 was added
gene: SREBF2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SREBF2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SREBF2 were set to 38847193
Phenotypes for gene: SREBF2 were set to Neurocutaneous syndrome, MONDO:0042983, SREBF2-related
Review for gene: SREBF2 was set to AMBER
Added comment: Two individuals with de novo missense variants, presenting with neurological, cutaneous and skeletal features; supportive functional data.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.6051 PSMF1 Zornitza Stark gene: PSMF1 was added
gene: PSMF1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PSMF1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PSMF1 were set to https://www.medrxiv.org/content/10.1101/2024.06.19.24308302v1
Phenotypes for gene: PSMF1 were set to Complex neurodevelopmental disorder with motor features, MONDO:0100516, PSMF1-related
Review for gene: PSMF1 was set to GREEN
Added comment: 22 individuals from 15 families reported with a range of neurological phenotypes ranging from early-onset Parkinson's disease; childhood conditions typified by ID and a range of movement disorders; through to perinatal lethal presentations with arthrogryposis multiplex. Genotype-phenotype correlation: biallelic missense variants resulted in the milder phenotypes, while bi-allelic LoF variants in the more severe phenotypes. Supportive functional data.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.6038 RDH14 Zornitza Stark gene: RDH14 was added
gene: RDH14 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: RDH14 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RDH14 were set to 34848785
Phenotypes for gene: RDH14 were set to Neurodevelopmental disorder, MONDO:0700092, RDH14-related
Review for gene: RDH14 was set to RED
Added comment: Two related individuals with ID and cerebellar atrophy and homozygous LoF variant reported.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.6025 ATXN7L3 Chirag Patel gene: ATXN7L3 was added
gene: ATXN7L3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ATXN7L3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ATXN7L3 were set to PMID: 38753057
Phenotypes for gene: ATXN7L3 were set to Neurodevelopmental disorder, MONDO_0100500
Review for gene: ATXN7L3 was set to GREEN
gene: ATXN7L3 was marked as current diagnostic
Added comment: This study reports 9 unrelated individuals with de novo heterozygous variants in ATXN7L3 identified through WES testing and GeneMatcher. Core clinical features included: global motor and language developmental delay, hypotonia, and dysmorphic features (hypertelorism, epicanthal folds, blepharoptosis, small nose, small mouth, and low-set posteriorly rotated ears). Variable features included: feeding difficulties, seizures, mild periventricular leukomalacia, and structural cardiac abnormalities.

A recurrent nonsense variant [p.(Arg114Ter)] was found in 5/9 individuals. The other variants were 1 frameshift [p.(Ser112LysfsTer12)] and 3 missense variants [p.(Ile71Thr), p.(Ser92Arg), and p.(Leu106Pro)]. They investigated the effects of the recurrent nonsense variant [p.(Arg114Ter)] in fibroblasts of an affected individual. ATXN7L3 protein levels were reduced, and deubiquitylation was impaired (as indicated by an increase in histone H2Bub1 levels). This is consistent with the previous observation of increased H2Bub1 levels in Atxn7l3-null mouse embryos, which have developmental delay and embryonic lethality.

Pathogenic variants in deubiquitinating enzymes (DUBs) have been implicated in neurodevelopmental disorders (ND) and congenital abnormalities. ATXN7L3 is a component of the DUB module of the SAGA complex, and two other related DUB modules, and serves as an obligate adaptor protein of 3 ubiquitin-specific proteases (USP22, USP27X or USP51).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.6022 FAM177A1 Chirag Patel gene: FAM177A1 was added
gene: FAM177A1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: FAM177A1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FAM177A1 were set to PMID: 38767059, 25558065
Phenotypes for gene: FAM177A1 were set to Neurodevelopmental disorder, MONDO_0100500
Review for gene: FAM177A1 was set to GREEN
gene: FAM177A1 was marked as current diagnostic
Added comment: PMID: 38767059
5 individuals from 3 unrelated families reported with with biallelic loss of function variants in FAM177A1. Clinical features included: global developmental delay, intellectual disability, seizures, behavioural abnormalities, hypotonia, gait disturbance, and macrocephaly.

They showed that FAM177A1 localizes to the Golgi complex in mammalian and zebrafish cells. Intersection of the RNA-seq and metabolomic datasets from FAM177A1-deficient human fibroblasts and whole zebrafish larvae demonstrated dysregulation of pathways associated with apoptosis, inflammation, and negative regulation of cell proliferation.

PMID: 25558065
A study of 143 multiplex consanguineous families identified a homozygous frameshift variant in FAM177A1 in 1 family with 4 affected siblings with intellectual disability, dolicocephaly, obesity, and macrocephaly. The variant segregated with all 4 affected siblings and parents were confirmed heterozygous carriers.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.6013 RELN Tashunka Taylor-Miller changed review comment from: 7 individuals from 4 families with biallelic variants, and 13 individuals from 7 families with monoallelic (heterozygous) variants of RELN and frontotemporal or temporal-predominant lissencephaly variant. Associated features: intellectual disability (16/20), seizures (5/20), unprovoked aggression (6/20), sleep disturbance (7/20)
Variant spectrum includes: loss of function, missense, splice-site variants.

MRI features include: anterior-predominant “thin”lisencephaly pachygyria with cerebellar hypoplasia
Biallelic variants are associated with a severe phenotype that includes cerebellar hypoplasia.
Monoallelic variants are associated with incomplete penetrance and variable expressivity (eg: one adult with abnormal MRI but normal intelligence and neurological profile).; to: 7 individuals from 4 families with biallelic variants, and 13 individuals from 7 families with monoallelic (heterozygous) variants of RELN and frontotemporal or temporal-predominant lissencephaly variant. Associated features: intellectual disability (16/20), seizures (5/20), unprovoked aggression (6/20), sleep disturbance (7/20)
Variant spectrum includes: loss of function, missense, splice-site variants.

MRI features include: anterior-predominant “thin” lisencephaly pachygyria with cerebellar hypoplasia.
Biallelic variants are associated with a severe phenotype that includes cerebellar hypoplasia.
Monoallelic variants are associated with incomplete penetrance and variable expressivity (eg: one adult with abnormal MRI but normal intelligence and neurological profile).
Intellectual disability syndromic and non-syndromic v0.5873 GABRA4 Adam Ivey gene: GABRA4 was added
gene: GABRA4 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: GABRA4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GABRA4 were set to PMID: 38565639
Phenotypes for gene: GABRA4 were set to Developmental delay; Intellectual disability; Epileptic seizures
Penetrance for gene: GABRA4 were set to Complete
Review for gene: GABRA4 was set to GREEN
Added comment: Four unrelated individuals with unique de novo missense variants in the transmembrane domain of GABRA4 have developmental delay and varying degrees of intellectual disability (PMID: 38565639). These variants are not present in gnomAD and three of the four variants have pathogenic REVEL scores. Two of the GABRA4 variants were heterozygous, while the remaining two were mosaic.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5821 SETBP1 Sangavi Sivagnanasundram commented on gene: SETBP1: Classified DEFINITIVE for both conditions by ClinGen ID and Autism GCEP.

SGS classified on 16/02/2021 - https://search.clinicalgenome.org/CCID:006117
Complex neurodevelopmental disorders on 20/10/2020 - https://search.clinicalgenome.org/CCID:006116

LoF is associated with complex neurodevelopmental disorder. There have been 20 LoF variants reported in individuals so far (nonsense, frameshift, large deletions)

GoF is proposed to be the mechanism of disease for Schinzel-Giedion syndrome (SGS) due to an increase in SETBP1 protein production. Missense variants (especially affecting p.868-871) are known to be disease causing.
Intellectual disability syndromic and non-syndromic v0.5821 SETBP1 Sangavi Sivagnanasundram commented on gene: SETBP1: Classified DEFINITIVE for both conditions by ClinGen ID and Autism GCEP.

SGS classified on 16/02/2021 - https://search.clinicalgenome.org/CCID:006117
Complex neurodevelopmental disorders on 20/10/2020 - https://search.clinicalgenome.org/CCID:006116

LoF is associated with complex neurodevelopmental disorder. There have been 20 LoF variants reported in individuals so far (nonsense, frameshift, large deletions)

GoF is proposed to be the mechanism of disease for Schinzel-Giedion syndrome (SGS) due to an increase in SETBP1 protein production. Missense variants (especially affecting p.868-871) are known to be disease causing.
Intellectual disability syndromic and non-syndromic v0.5797 SPR Amy Chiang edited their review of gene: SPR: Added comment: SPR has been classified to have definitive association with dopa-responsive dystonia (reviewed by the Aminoacidopathy Expert Panel on 06/04/2021).

Clinical phenotypes are mainly neuromuscular with characteristic features of axial hypotonia, dystonia, delayed psychomotor development, oculogyric crises, diurnal fluctuation with improvement after sleep; though cognitive impairment ranging from mild to severe levels have been reported in patients with sepiapterin reductase deficiency (PMID: 16049044, 17188538) - 7 Maltese patients with the same homozygous spice variants in SPR (founder effect due to relative small Maltese population); note there was no significant improvement in cognitive ability with L-dopa treatment in these patients despite improvement in their motor abilities (PMID: 16049044) - ? other causes to cognitive impairment in these patients other than SPR associated sepiapterin reductase deficiency

There are 271 SPR variants registered in ClinVar to date with only 1 submission from a research lab reported 2 affected individuals with intellectual disability + family history (ClinVar # 625209) - no publication available to verify, ? from BRIDGE consortium study: SPEED project cohort
A start loss variant detected in 5 affected individuals with ID & epilepsy from a Persian consanguineous family - LOD score = 4.027 (PMID: 29302074); Changed publications: PMID: 29302074, 16049044, 17188538; Changed phenotypes: MONDO #0012994, OMIM #612716, axial hypotonia, dystonia with diurnal fluctuation, oculogyric crises, delayed psychomotor development, sepiapterin reductase deficiency
Intellectual disability syndromic and non-syndromic v0.5796 SPR Amy Chiang changed review comment from: SPR has been classified to have definitive association with dopa-responsive dystonia. This was reviewed by the Aminoacidopathy Expert Panel on 06/04/2021.
There are 271 SPR variants registered in ClinVar to date with only 1 submission from a research lab reported 2 affected individuals with intellectual disability + family history (ClinVar # 625209) - no publication available to verify, ? from BRIDGE consortium study: SPEED project cohort
A start loss variant detected in 5 affected individuals with ID & epilepsy from a Persian consanguineous family - LOD score = 4.027 (PMID: 29302074); to: SPR has been classified to have definitive association with dopa-responsive dystonia. This was reviewed by the Aminoacidopathy Expert Panel on 06/04/2021.
There are 271 SPR variants registered in ClinVar to date with only 1 submission from a research lab reported 2 affected individuals with intellectual disability + family history (ClinVar # 625209) - no publication available to verify, ? from BRIDGE consortium study: SPEED project cohort
A start loss variant detected in 5 affected individuals with ID & epilepsy from a Persian consanguineous family - LOD score = 4.027 (PMID: 29302074)
Intellectual disability syndromic and non-syndromic v0.5794 DAGLA Zornitza Stark gene: DAGLA was added
gene: DAGLA was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: DAGLA was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DAGLA were set to 35737950
Phenotypes for gene: DAGLA were set to Neuroocular syndrome 2, paroxysmal type, MIM# 168885
Review for gene: DAGLA was set to GREEN
Added comment: 9 individuals from 8 families reported with daily paroxysmal spells characterized by eye deviation or nystagmus with abnormal head posturing apparent from birth or early infancy. The episodes tend to be triggered after sleeping, and most patients show improvement of the ocular symptoms over time. Affected individuals also have hypotonia, mild developmental delay, dysarthria, and gait ataxia; most have mildly impaired intellectual development. Seizures are not observed.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5790 NOTCH3 Ain Roesley changed review comment from: Pre-print (https://sciprofiles.com/publication/view/62eb776390415f0166f73fae7cd172ed)

Review of research and diagnostic databases and literature review found 50 individuals from 31 families with biallelic variants.

13 PTCS (including splice) and 15 missense resulting in gain or loss of Cys residue.

AR PTCs are associated with early onset leukoencephalopathy including cognitive decline, dev delay/ID and dysmorphism

AR missense are associated with CADASIL-like phenotype; to: Pre-print (https://sciprofiles.com/publication/view/62eb776390415f0166f73fae7cd172ed)

Review of research and diagnostic databases and literature review found 50 individuals from 31 families with biallelic variants.

13 PTCS (including splice) and 15 missense resulting in gain or loss of Cys residue.

AR PTCs are associated with early onset leukoencephalopathy including cognitive decline, dev delay/ID and dysmorphism; seizures, spasticity, hypotonia, ataxia

AR missense are associated with CADASIL-like phenotype
Intellectual disability syndromic and non-syndromic v0.5781 RNU4-2 Zornitza Stark changed review comment from: Emerging evidence that de novo variants in this gene cause ID.
Sources: Literature; to: Over 100 individuals with ID found to have de novo variants in this gene. Please note difficult to identify on ES.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5772 SNF8 Zornitza Stark commented on gene: SNF8: Four individuals from 3 families with NDD plus OA, rather than DEE.
Intellectual disability syndromic and non-syndromic v0.5767 BANF1 Zornitza Stark gene: BANF1 was added
gene: BANF1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: BANF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: BANF1 were set to 35982159
Phenotypes for gene: BANF1 were set to Neurodevelopmental disorder, MONDO:0700092, BANF1-related
Review for gene: BANF1 was set to RED
Added comment: Single individual reported with a de novo variant, p.Ala87Thr, and a neurodevelopmental disorder.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5763 YKT6 Zornitza Stark gene: YKT6 was added
gene: YKT6 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: YKT6 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: YKT6 were set to 38522068
Phenotypes for gene: YKT6 were set to Syndromic disease, MONDO:0002254, YKT6-related
Review for gene: YKT6 was set to AMBER
Added comment: Two individuals homozygous for YKT6 [NM_006555.3:c.554A>G p.(Tyr185Cys)] exhibited normal prenatal course followed by failure to thrive, developmental delay and progressive liver disease. Haplotype analysis identified a shared homozygous region flanking the variant, suggesting a common ancestry. The third individual homozygous for YKT6 [NM_006555.3:c.191A>G p.(Tyr64Cys)] exhibited neurodevelopmental disorders and optic atrophy. Supportive functional data in Drosophila. Amber rating due to homozygous missense variants and founder effect in two of the families.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5761 SEPHS1 Zornitza Stark gene: SEPHS1 was added
gene: SEPHS1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SEPHS1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SEPHS1 were set to 38531365
Phenotypes for gene: SEPHS1 were set to Neurodevelopmental disorder, MONDO:0700092, SEPHS1-related
Review for gene: SEPHS1 was set to GREEN
Added comment: Nine individuals from eight families with developmental delay, growth and feeding problems, hypotonia, and dysmorphic features, all with heterozygous missense variants in SEPHS1. Eight of these individuals had a recurrent variant at amino acid position 371 of SEPHS1 (p.Arg371Trp, p.Arg371Gln, and p.Arg371Gly); seven of these variants were known to be de novo.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5756 GTF3C5 Bryony Thompson gene: GTF3C5 was added
gene: GTF3C5 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: GTF3C5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GTF3C5 were set to 38520561; 35503477
Phenotypes for gene: GTF3C5 were set to neurodevelopmental disorder MONDO:0700092, GTF3C5-related
Review for gene: GTF3C5 was set to GREEN
gene: GTF3C5 was marked as current diagnostic
Added comment: 4 families/probands with syndromic ID. Loss of function is the expected
PMID: 38520561 - Biallelic variants identified (3 missense & 1 stopgain) in 4 individuals from 3 families presenting with multisystem developmental syndrome including the features: growth retardation, developmental delay, intellectual disability, dental anomalies, cerebellar malformations, delayed bone age, skeletal anomalies, and facial dysmorphism. Gene-disease relationship supported by: reduced protein expression in patient cells, yeast assays, and a zebrafish model
PMID: 35503477 - 1 proband with biallelic missense variants and hypomelanosis of Ito, seizures, growth retardation, abnormal brain MRI, developmental delay, and facial dysmorphism
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5750 DISP1 Zornitza Stark edited their review of gene: DISP1: Added comment: PMID: 38529886
25 individuals from 20 unrelated families with a phenotype associated with mild holoprosencephaly (HPE).
A total of 23 different variants were identified in DISP1 (missense, frameshift and nonsense).
14 heterozygous individuals , 5 compound heterozygous individuals, 6 homozygous individuals (5 of the individuals were from 3 unrelated consanguineous families).

HPE phenotype was also seen prenatally as one of the reported monoallelic individuals was a fetus at 20+6 GW prior to passing due to MTP.; Changed publications: 19184110, 26748417, 23542665, 38529886; Changed phenotypes: Holoprosencephaly (MONDO:0016296), DISP1-related; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.5746 DOCK4 Sangavi Sivagnanasundram changed review comment from: 7 unrelated individuals reported with heterozygous variants (missense or null variants) in DOCK4. The individuals either had ID or DD between mild and moderate with brain abnormalities.

Functional assay neuro-2A Dock4 knockout cells by using the Alt-R CRISPR-Cas9 system utilizing two different guide RNAs (ko1 and ko2) and one nonspecific control guide RNA (C: control). The assay depicted the loss of function mechanism in the presence of either p.Arg853Leu and p.Asp946_Lys1966delinsValSer* (described as 945VS).; to: 7 unrelated individuals reported with heterozygous variants (missense or null variants) in DOCK4. The individuals either had ID or DD between mild and moderate with brain abnormalities. Two of the individuals are reportedly compound heterozygous.

Functional assay neuro-2A Dock4 knockout cells by using the Alt-R CRISPR-Cas9 system utilizing two different guide RNAs (ko1 and ko2) and one nonspecific control guide RNA (C: control). The assay depicted the loss of function mechanism in the presence of either p.Arg853Leu and p.Asp946_Lys1966delinsValSer* (described as 945VS).
Intellectual disability syndromic and non-syndromic v0.5746 DOCK4 Sangavi Sivagnanasundram changed review comment from: Well-established gene-disease association

7 unrelated individuals reported with heterozygous variants (missense or null variants) in DOCK4. The individuals either had ID or DD between mild and moderate with brain abnormalities.

Functional assay neuro-2A Dock4 knockout cells by using the Alt-R CRISPR-Cas9 system utilizing two different guide RNAs (ko1 and ko2) and one nonspecific control guide RNA (C: control). The assay depicted the loss of function mechanism in the presence of either p.Arg853Leu and p.Asp946_Lys1966delinsValSer* (described as 945VS).; to: 7 unrelated individuals reported with heterozygous variants (missense or null variants) in DOCK4. The individuals either had ID or DD between mild and moderate with brain abnormalities.

Functional assay neuro-2A Dock4 knockout cells by using the Alt-R CRISPR-Cas9 system utilizing two different guide RNAs (ko1 and ko2) and one nonspecific control guide RNA (C: control). The assay depicted the loss of function mechanism in the presence of either p.Arg853Leu and p.Asp946_Lys1966delinsValSer* (described as 945VS).
Intellectual disability syndromic and non-syndromic v0.5745 FRYL Ain Roesley gene: FRYL was added
gene: FRYL was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: FRYL was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FRYL were set to 38479391
Phenotypes for gene: FRYL were set to neurodevelopmental disorder MONDO:0700092, FRYL-related
Review for gene: FRYL was set to GREEN
gene: FRYL was marked as current diagnostic
Added comment: 14 individuals, all de novo except 1x duo testing (not present in tested father)
5x missense + 8x fs/stopgain + 1x canonical splice

13/13 with ID/DD (1x deceased)
4/14 seizures
7/14 with cardiac anomalies such as PDA, TOF, VSD, dextrocardia

1x also has a de novo fs variant in SF3B4
1x also has a de novo stop gain variant in SDHA

functional studies using flies were performed
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5743 KCNB2 Ain Roesley gene: KCNB2 was added
gene: KCNB2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: KCNB2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KCNB2 were set to 38503299
Phenotypes for gene: KCNB2 were set to neurodevelopmental disorder MONDO:0700092, KCNB2-related
Review for gene: KCNB2 was set to GREEN
gene: KCNB2 was marked as current diagnostic
Added comment: 7 individuals, all missense
5 de novo + 1x inherited from father who has hypotonia + 1x from asymptomatic father

2/5 MRI anomalies
2/5 cardiac anomalies
2/7 urogenital anomalies
7/7 with ID
2/7 epilepsy
2/7 hypotonia
Sources: Literature
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5741 PLXNB2 Chirag Patel gene: PLXNB2 was added
gene: PLXNB2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PLXNB2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PLXNB2 were set to PMID: 38458752
Phenotypes for gene: PLXNB2 were set to Amelogenesis imperfecta MONDO:0019507, PLXNB2 -related; Sensorineural hearing loss disorder MONDO:0020678, PLXNB2 -related
Review for gene: PLXNB2 was set to GREEN
gene: PLXNB2 was marked as current diagnostic
Added comment: 8 individuals from 6 families with core features of amelogenesis imperfecta and sensorineural hearing loss. Intellectual disability, ocular disease, ear developmental abnormalities and lymphoedema were also present in multiple cases. WES and WGS identified biallelic pathogenic variants in PLXNB2 (missense, nonsense, splice and a multiexon deletion variants). Variants segregated with disease.

PLXNB2 is a large transmembrane semaphorin receptor protein, and semaphorin-plexin signalling controls cellular interactions that are critical during development as well as in adult life stages. Plxnb2 expression was detected in differentiating ameloblasts in mice. Human phenotype overlaps with that seen in Plxnb2 knockout mice.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5734 USP27X Zornitza Stark edited their review of gene: USP27X: Added comment: Ten additional individuals and further experimental data reported.; Changed rating: GREEN; Changed publications: 25644381, 38182161; Changed phenotypes: Intellectual disability, X-linked 105, MIM#300984
Intellectual disability syndromic and non-syndromic v0.5731 FEM1B Zornitza Stark edited their review of gene: FEM1B: Added comment: Five individuals reported now with same recurrent missense variant, NM_015322.5:c.377G>A NP_056137.1:p.(Arg126Gln). Affected individuals shared a severe neurodevelopmental disorder with behavioral phenotypes and a variable set of malformations, including brain anomalies, clubfeet, skeletal abnormalities, and facial dysmorphism. Overexpression of the the FEM1BR126Q variant but not FEM1B wild-type protein, during mouse brain development, resulted in delayed neuronal migration of the target cells.; Changed rating: GREEN; Changed publications: 31036916, 38465576; Changed phenotypes: Syndromic disease MONDO:0002254, FEM1B-related
Intellectual disability syndromic and non-syndromic v0.5729 USP14 Zornitza Stark gene: USP14 was added
gene: USP14 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: USP14 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: USP14 were set to 38469793; 35066879
Phenotypes for gene: USP14 were set to Syndromic disease MONDO:0002254, USP14-related
Review for gene: USP14 was set to AMBER
Added comment: AMBER rating as two of the families had affected fetuses, one had a severely affected newborn, and fourth had a progressive course: none fit well with ID, though there's likely to be a continuum.

PMID 35066879: 3 fetuses from 2 different branches of a consanguineous family, presenting with distal arthrogryposis, underdevelopment of the corpus callosum, and dysmorphic facial features. Exome sequencing identified a biallelic 4-bp deletion (c.233_236delTTCC; p.Leu78Glnfs*11) in USP14, and sequencing of family members showed segregation with the phenotype. Ubiquitin-specific protease 14 (USP14) encodes a major proteasome-associated deubiquitinating enzyme with an established dual role as an inhibitor and an activator of proteolysis, maintaining protein homeostasis. Usp14-deficient mice show a phenotype similar to lethal human multiple congenital contractures phenotypes, with callosal anomalies, muscle wasting, and early lethality, attributed to neuromuscular junction defects due to decreased monomeric ubiquitin pool. RT-qPCR experiment in an unaffected heterozygote revealed that mutant USP14 was expressed, indicating that abnormal transcript escapes nonsense-mediated mRNA decay.

PMID 38469793: biallelic USP14 variants in four individuals from three unrelated families: one fetus, a newborn with a syndromic NDD, and two siblings affected by a progressive neurological disease. Specifically, the two siblings from the latter family carried two compound heterozygous variants c.8T>C p.(Leu3Pro) and c.988C>T p.(Arg330*), while the fetus had a homozygous frameshift c.899_902del p.(Lys300Serfs*24) variant and the newborn patient harbored a homozygous frameshift c.233_236del p.(Leu78Glnfs*11) variant. The fetus and the newborn had extensive brain malformations.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5717 CELSR3 Crystle Lee gene: CELSR3 was added
gene: CELSR3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CELSR3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CELSR3 were set to PMID: 38429302
Phenotypes for gene: CELSR3 were set to Neurodevelopmental disorder (MONDO#0700092), CELSR3-related
Review for gene: CELSR3 was set to GREEN
Added comment: PMID: 38429302:12 affected individuals from 11 families reported with bi-allelic variants. Phenotype ranged from CNS anomalies (7/12), CNS and CAKUT (3/12) and CAKUT only (2/12). 8/12 has ID/DD. Only missense variants reported and 1 inframe variant. Functional studies done in zebrafish demonstrate similar structural anomalies of the developing pronephros and neuronal abnormalities to affected individuals
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5715 ZSCAN10 Rylee Peters gene: ZSCAN10 was added
gene: ZSCAN10 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ZSCAN10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZSCAN10 were set to PMID: 38386308
Phenotypes for gene: ZSCAN10 were set to Syndromic disease MONDO:0002254
Review for gene: ZSCAN10 was set to GREEN
Added comment: Bi-allelic ZSCAN10 loss-of-function variants were identified in seven affected individuals from five unrelated families with syndromic neurodevelopmental disorder.

Highly consistent phenotypic features include global developmental delay, behavioural abnormalities, and variable facial asymmetry with outer and inner ear malformations leading to profound SNHL.

Facial asymmetry was recapitulated in the Zscan10 mouse model along with inner and outer ear malformations.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5714 SLC12A9 Zornitza Stark gene: SLC12A9 was added
gene: SLC12A9 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SLC12A9 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC12A9 were set to 38334070
Phenotypes for gene: SLC12A9 were set to Neurodevelopmental disorder, MONDO:0700092, SLC12A9-related
Review for gene: SLC12A9 was set to GREEN
Added comment: Three individuals from unrelated families with bi-allelic LoF variants and a neurodevelopmental phenotype, skeletal abnormalities, brain abnormalities, hypopigmentation, dysmorphic features.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5712 SNF8 Chern Lim gene: SNF8 was added
gene: SNF8 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SNF8 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SNF8 were set to 38423010
Phenotypes for gene: SNF8 were set to Severe developmental delay, epileptic encephalopathy, brain MRI abnormality; intellectual disability, childhood-onset optic atrophy, ataxia
Review for gene: SNF8 was set to GREEN
gene: SNF8 was marked as current diagnostic
Added comment: PMID: 38423010
- Nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8. In total, three putative LoF variants and four missense variants were identified.
- The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile) as compound heterozygous.
- Functional studies using fibroblasts derived from patients and zebrafish model showed LoF is the disease mech.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5711 RREB1 Zornitza Stark gene: RREB1 was added
gene: RREB1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: RREB1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RREB1 were set to 32938917; 38332451
Phenotypes for gene: RREB1 were set to Rasopathy, MONDO:0021060, RREB1-related
Review for gene: RREB1 was set to AMBER
Added comment: PMID 32938917: Single individual reported with Noonan syndrome-like features and a deletion encompassing RREB1. Overlapping deletions in publicly reported databases examined, and RREB1 postulated to be the key gene. Rreb1 hemizygous mice display orbital hypertelorism and age dependent cardiac hypertrophy. RREB1 recruits SIN3A and KDM1A to an RRE in target promoters in human and murine cells to control histone H3K4 methylation of MAPK pathway genes. In summary, single well phenotyped individual with a CNV and experimental data to support gene-disease association.

PMID 38332451: de novo LoF variant in an individual with phenotype consistent with the previous reports.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5692 ASCC3 Zornitza Stark gene: ASCC3 was added
gene: ASCC3 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert Review
Mode of inheritance for gene: ASCC3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ASCC3 were set to 21937992; 35047834
Phenotypes for gene: ASCC3 were set to Intellectual developmental disorder, autosomal recessive 81, MIM# 620700
Review for gene: ASCC3 was set to GREEN
Added comment: Combined neuromuscular and neurobehavioral phenotype.

11 individuals from 7 unrelated families with homozygous (missense) or compound heterozygous variants (missense with a presumed LoF variant or 2 missense, no biallelic LoF) with a neurologic phenotype that ranges from severe developmental delay to muscle fatigue
Sources: Expert Review
Intellectual disability syndromic and non-syndromic v0.5666 PPFIA3 Zornitza Stark gene: PPFIA3 was added
gene: PPFIA3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PPFIA3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PPFIA3 were set to 37034625
Phenotypes for gene: PPFIA3 were set to Neurodevelopmental disorder, MONDO:0700092, PPFIA3-related
Review for gene: PPFIA3 was set to GREEN
Added comment: 19 individuals with mono-allelic variants presenting with features including developmental delay, intellectual disability, hypotonia, micro/macrocephaly, autism, and epilepsy.

One individual with compound het variants: insufficient evidence for bi-allelic variants causing disease.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5661 MAX Rylee Peters gene: MAX was added
gene: MAX was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: MAX was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MAX were set to 38141607
Phenotypes for gene: MAX were set to Syndromic disease (MONDO:0002254), MAX-related
Review for gene: MAX was set to GREEN
Added comment: Three individuals who each share a recurrent de novo germline variant in the MAX gene, resulting in a p.Arg60Gln substitution in the loop of the b-HLH-LZ domain.

Affected individuals have a complex disorder consisting primarily of macrocephaly, polydactyly, and delayed ophthalmic development. Other phenotypes reported include intellectual disability, perianal abscesses, pectus carinatum, hypospadias, renal agenesis, single umbilical artery, flattened thoracic vertebrae.

Functional analysis of the p.Arg60Gln variant shows a significant increase in CCND2 protein and a more efficient heterodimerization with c-Myc resulting in an increase in transcriptional activity of c-Myc.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5660 CACHD1 Suliman Khan gene: CACHD1 was added
gene: CACHD1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CACHD1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CACHD1 were set to PMID: 38158856
Phenotypes for gene: CACHD1 were set to syndromic complex neurodevelopmental disorder MONDO:0800439
Penetrance for gene: CACHD1 were set to unknown
Review for gene: CACHD1 was set to GREEN
Added comment: PMID: 38158856 - Six affected individuals from four unrelated families with homozygous CACHD1 variants (3 splice, 2 frameshift and 1 nonsense variant). Excluding the two fatal cases, all other were affected by syndromic neurodevelopmental abnormalities, multiple organ systems featuring global impairment of psychomotor development, dysmorphic facial features, genitourinary abnormalities, oculo-auricular and congenital malformation. Seizure was reported in one case. Whole exome sequencing identified bi-allelic loss of function variants in the CACHD1 gene. In vitro human neural models of CACHD1 depletion displayed dysregulated of Wnt signaling in the developing brain.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5659 GTPBP1 Lucy Spencer gene: GTPBP1 was added
gene: GTPBP1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: GTPBP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GTPBP1 were set to 38118446
Phenotypes for gene: GTPBP1 were set to Neurodevelopmental disorder (MONDO#0700092), GTPBP1-related
Review for gene: GTPBP1 was set to GREEN
Added comment: PMID: 38118446- Cohort of individuals with variants in GTPBP2 (which has been previously described) and GTPBP1 (new) who have an identical neurodevelopmental syndrome. 4 homozygous individuals from 3 consanguineous families. 2 families have different NMD-predicted nonsense variants and the third has a missense, all are absent from gnomad v4.

The shared cardinal features of GTPBP1 and 2 related disease are microcephaly, profound neurodevelopmental impairment, and distinctive craniofacial features. Epilepsy was present in 10 of 20 individuals but its not clear if those individuals had GTPBP1 or 2 variants.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5646 MANF Zornitza Stark gene: MANF was added
gene: MANF was added to Intellectual disability syndromic and non-syndromic. Sources: Expert Review
Mode of inheritance for gene: MANF was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MANF were set to 26077850; 33500254; 34815294
Phenotypes for gene: MANF were set to Diabetes, deafness, developmental delay, and short stature syndrome, MIM# 620651
Review for gene: MANF was set to AMBER
Added comment: Two individuals reported with homozygous variants. Mouse model recapitulates deafness phenotype.
Sources: Expert Review
Intellectual disability syndromic and non-syndromic v0.5641 PRPF19 Zornitza Stark gene: PRPF19 was added
gene: PRPF19 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PRPF19 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PRPF19 were set to 37962958
Phenotypes for gene: PRPF19 were set to Neurodevelopmental disorder (MONDO:0700092), PRPF19-related
Review for gene: PRPF19 was set to GREEN
Added comment: PMID: 37962958 Six unrelated individuals with de novo variants. Five had speech language motor delay, four had formal diagnosis of autism, three hypotonia and one fetus with multiple congenital abnormalities.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5641 PRPF19 Zornitza Stark gene: PRPF19 was added
gene: PRPF19 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PRPF19 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PRPF19 were set to 37962958
Phenotypes for gene: PRPF19 were set to Neurodevelopmental disorder (MONDO:0700092), PRPF19-related
Review for gene: PRPF19 was set to GREEN
Added comment: PMID: 37962958 Six unrelated individuals with de novo variants. Five had speech language motor delay, four had formal diagnosis of autism, three hypotonia and one fetus with multiple congenital abnormalities.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5631 CRELD1 Naomi Baker gene: CRELD1 was added
gene: CRELD1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CRELD1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CRELD1 were set to PMID: 37947183
Phenotypes for gene: CRELD1 were set to Neurodevelopmental disorder (MONDO:0700092), CRELD1-related
Review for gene: CRELD1 was set to GREEN
Added comment: Publication reports 18 individuals from 14 unrelated families affected by biallelic recessive variants in CRELD1, presenting with early-onset neurodevelopmental features, most notably hypotonia and epilepsy, with developmental plateauing and slowly progressive nonneurologic medical complexities in survivors, including cardiac rhythm disturbances and frequent infections. Most individuals have a missense variant in trans with a putative null allele. Four variants were re-current: p.(Cys192Tyr) in 10 families, p.(Gln320Argfs) in 5 families, p.(Ala377Thrfs) in 2 families, and p.(Met369Val) also in 2 families. Some functional studies also reported (Xenopus tropicalis).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5631 RAB1A Chris Ciotta gene: RAB1A was added
gene: RAB1A was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: RAB1A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RAB1A were set to PMID: 37924809
Phenotypes for gene: RAB1A were set to neurodevelopmental disorder MONDO:0700092, CASP2-related
Review for gene: RAB1A was set to AMBER
Added comment: 4 families and 5 individuals, 2/5 have speech delay and 4/5 have motor delay.
Anxiety in 3/5 and autism in 2/5. Microcephaly in only one individual, spastic paraplegia observed in 2 individuals from one family.
In 2 families variants were inherited from an affected parent.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5616 DOT1L Zornitza Stark gene: DOT1L was added
gene: DOT1L was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: DOT1L was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DOT1L were set to 37827158
Phenotypes for gene: DOT1L were set to Neurodevelopmental disorder, MONDO:0700092, DOT1L-related
Mode of pathogenicity for gene: DOT1L was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: DOT1L was set to GREEN
Added comment: Nine individuals reported with seven de novo missense variants.

All had DD/ID and variable patterns of associated congenital anomalies.

Variants demonstrated to be GoF and lead to increased H3K79 methylation levels in flies and human cells.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5606 VCP Manny Jacobs gene: VCP was added
gene: VCP was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: VCP was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: VCP were set to PMID: 37883978
Phenotypes for gene: VCP were set to Neurodevelopmental disorder (MONDO: 0700092)
Review for gene: VCP was set to GREEN
Added comment: 13 unrelated individuals with childhood onset ID/DD disorder including macrocephaly, hypotonia and dysmorphic features. Non-specific / mild MRI findings.
12 de novo - 1 inherited
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5603 AGPAT3 Ee Ming Wong changed review comment from: - Single consanguineous family with four individuals with severe intellectual disability and retinitis pigmentosa
- All affected individuals were homozygous for a nonsense variant in AGPAT3, healthy unaffected individuals who were tested were heterozygous for the variant
- Overexpression of mutant transcript revealed absence of AGPAT3 protein compared to WT transcript via Western blot analysis
- KO AGPAT3 mouse demonstrated impaired neuronal migration
Sources: Literature; to: - Single consanguineous family with four individuals with severe intellectual disability and retinitis pigmentosa
- All affected individuals were homozygous for a nonsense variant in AGPAT3, healthy unaffected individuals who were tested were heterozygous for the variant
- Overexpression of mutant transcript revealed absence of AGPAT3 protein compared to WT transcript via Western blot analysis
- KO AGPAT3 mouse demonstrated impaired neuronal migration
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5602 SGSM3 Dean Phelan gene: SGSM3 was added
gene: SGSM3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SGSM3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SGSM3 were set to PMID: 37833060
Phenotypes for gene: SGSM3 were set to Neurodevelopmental disorder (MONDO:0700092), SGSM3-related
Review for gene: SGSM3 was set to GREEN
Added comment: PMID: 37833060
- 13 patients from 8 families of Ashkenazi Jewish origin all had the same homozygous frameshift variant (c.981dup). Predicted to cause NMD. The variant co-segregated with disease in all available family members. The affected individuals displayed mild global developmental delay and mild to moderate intellectual disability. Additional prevalent phenotypes observed included hypotonia, behavioural challenges and short stature. Considered a founder variant (1 in 52 Ashkenazi Jews carry the variant). Also present in other populations but no homozygotes in gnomAD.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5602 AGPAT3 Ee Ming Wong gene: AGPAT3 was added
gene: AGPAT3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: AGPAT3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: AGPAT3 were set to PMID: 37821758
Phenotypes for gene: AGPAT3 were set to Neurodevelopmental disorder (MONDO#0700092), AGPAT3-related
Review for gene: AGPAT3 was set to GREEN
gene: AGPAT3 was marked as current diagnostic
Added comment: - Single consanguineous family with four individuals with severe intellectual disability and retinitis pigmentosa
- All affected individuals were homozygous for a nonsense variant in AGPAT3, healthy unaffected individuals who were tested were heterozygous for the variant
- Overexpression of mutant transcript revealed absence of AGPAT3 protein compared to WT transcript via Western blot analysis
- KO AGPAT3 mouse demonstrated impaired neuronal migration
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5595 PTPN4 Bryony Thompson changed review comment from: >3 unrelated probands and supporting mouse model
PMID: 17953619 - knockout mouse model has impaired motor learning and cerebellar synaptic plasticity
PMID: 25424712 - twins with a de novo whole gene deletion and a Rett-like neurodevelopmental disorder
PMID: 30238967 - mosaic de novo variant (p.Leu72Ser) identified in a child with developmental delay, autistic features, hypotonia, increased immunoglobulin E and dental problems. Also supporting mouse assays demonstrating loss of protein expression in dendritic spines
DOI: https://doi.org/10.1016/j.xhgg.2021.100033 - missense and truncating variants in six unrelated individuals with varying degrees of intellectual disability or developmental delay. 5 were able to undergo segregation analysis and found to be de novo.
Sources: Literature; to: >3 unrelated probands and supporting mouse model
PMID: 17953619 - knockout mouse model has impaired motor learning and cerebellar synaptic plasticity
PMID: 25424712 - twins with a de novo whole gene deletion and a Rett-like neurodevelopmental disorder
PMID: 30238967 - mosaic de novo variant (p.Leu72Ser) identified in a child with developmental delay, autistic features, hypotonia, increased immunoglobulin E and dental problems. Also supporting mouse assays demonstrating loss of protein expression in dendritic spines
PMID: 34527963 - missense and truncating variants in six unrelated individuals with varying degrees of intellectual disability or developmental delay. 5 were able to undergo segregation analysis and found to be de novo.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5514 MYCN Naomi Baker commented on gene: MYCN: Three individuals now reported with gain-of-function missense variants (identical variant in two individuals). Clinical presentation includes megalencephaly, hypoplastic corpus callosum, postaxial polydactyly, intellectual disability and motor delay. Knock-in mouse model showed morphological manifestations in multiple tissues including digits, female reproductive system and kidney.
Intellectual disability syndromic and non-syndromic v0.5512 MAST4 Ain Roesley gene: MAST4 was added
gene: MAST4 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: MAST4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MAST4 were set to 36910266; 33057194
Phenotypes for gene: MAST4 were set to neurodevelopmental disorder MONDO:0700092, MAST4-related
Penetrance for gene: MAST4 were set to Complete
Review for gene: MAST4 was set to GREEN
gene: MAST4 was marked as current diagnostic
Added comment: PMID: 36910266 - 4 families with 4 affecteds, all de novo missense

2x borderline microcephaly (-2SD)
2x gross motor delay
2x dysmorphism
4x ID + seizures
3x abnormal brain MRI findings

PMID: 33057194 - 5x de novos, 4x missense + 1x PTC
Cohort of individuals with severe developmental disorder
individual phenotypic information not provided


Recurrent variants are Thr1471Ile (3x) and Ser1181Phe)
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5509 ATP2B2 Andrew Fennell gene: ATP2B2 was added
gene: ATP2B2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ATP2B2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ATP2B2 were set to PMID: 37675773
Phenotypes for gene: ATP2B2 were set to Neurodevelopmental Disorder, MONDO:0700092, ATP2B2-related
Mode of pathogenicity for gene: ATP2B2 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: ATP2B2 was set to GREEN
Added comment: 7 unrelated individuals reported with a variable phenotype including dystonia, ataxia, intellectual disability, behavioural symptoms, and seizures.

All patients have either missense variants or frameshift variants in the penultimate exon not expected to lead to NMD. This is in contrast to patients with isolated deafness previously reported to have nonsense, frameshift, or splice-site variants outside of this region.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5509 COG3 Daniel Flanagan gene: COG3 was added
gene: COG3 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: COG3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: COG3 were set to PMID: 37711075
Phenotypes for gene: COG3 were set to Neurodevelopmental disorder (MONDO#0700092), COG3-related
Review for gene: COG3 was set to AMBER
Added comment: Two COG3 homozygous missense variants in four individuals from two unrelated consanguineous families. Clinical phenotypes of affected individuals include global developmental delay, severe intellectual disability, microcephaly, epilepsy, facial dysmorphism, and variable neurological findings.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.5390 COL4A3BP Ee Ming Wong changed review comment from: - Thirty-one unrelated individuals with twenty-two distinct missense variants. The majority of variants were de novo.
- Several variants transfected into HeLa cells demonstrated gain of CERT activity
- CERT gain of function in Drosophila melanogaster led to head and brain size defects and impaired locomotor activity, which was corrected by pharmacological inhibition of CERT; to: - current HGNC symbol: CERT1
- Thirty-one unrelated individuals with twenty-two distinct missense variants. The majority of variants were de novo.
- Several variants transfected into HeLa cells demonstrated gain of CERT activity
- CERT gain of function in Drosophila melanogaster led to head and brain size defects and impaired locomotor activity, which was corrected by pharmacological inhibition of CERT
Intellectual disability syndromic and non-syndromic v0.5390 COL4A3BP Ee Ming Wong changed review comment from: - Thirty-one unrelated individuals with twenty-two distinct missense variants. The majority of variants were de novo.
- Several variants transfected into HeLa cells demonstrated gain of CERT activity
- CERT gain of function in Drosophila melanogaster led to head and brain size defects and impaired locomotor activity,
which was corrected by pharmacological inhibition of CERT; to: - Thirty-one unrelated individuals with twenty-two distinct missense variants. The majority of variants were de novo.
- Several variants transfected into HeLa cells demonstrated gain of CERT activity
- CERT gain of function in Drosophila melanogaster led to head and brain size defects and impaired locomotor activity, which was corrected by pharmacological inhibition of CERT
Intellectual disability syndromic and non-syndromic v0.5390 COL4A3BP Ee Ming Wong changed review comment from: - Thirty-one unrelated individuals with twenty-two distinct missense variants. The majority of variants were de novo.
- Several variants transfected into HeLa cells demonstrated gain of CERT activity
- CERT gain of function in Drosophila melanogaster led to head and brain size defects and impaired locomotor activity,
which was corrected by pharmacological inhibition of CERT; to: - Thirty-one unrelated individuals with twenty-two distinct missense variants. The majority of variants were de novo.
- Several variants transfected into HeLa cells demonstrated gain of CERT activity
- CERT gain of function in Drosophila melanogaster led to head and brain size defects and impaired locomotor activity,
which was corrected by pharmacological inhibition of CERT
Intellectual disability syndromic and non-syndromic v0.5390 RAB5C Rylee Peters changed review comment from: 12 individuals with nine different heterozygous de novo variants in RAB5C.
9 with missense, 1 inframe duplication and 2 stop-gains (clinically more severe).
All has mild-severe ID, 4/12 have epilepsy, 6/12 have macrocephaly (more than 3 SD).
Sources: Literature; to: 12 individuals with nine different heterozygous de novo variants in RAB5C.
9 with missense, 1 inframe duplication and 2 stop-gains (clinically more severe).
All have mild to severe ID, 4/12 have epilepsy, 6/12 have macrocephaly (more than 3 SD).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5387 RAB5C Rylee Peters gene: RAB5C was added
gene: RAB5C was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: RAB5C was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RAB5C were set to PMID: 37552066
Phenotypes for gene: RAB5C were set to Neurodevelopmental disorder MONDO:0700092, RAB5C-related
Penetrance for gene: RAB5C were set to Complete
Review for gene: RAB5C was set to GREEN
gene: RAB5C was marked as current diagnostic
Added comment: 12 individuals with nine different heterozygous de novo variants in RAB5C.
9 with missense, 1 inframe duplication and 2 stop-gains (clinically more severe).
All has mild-severe ID, 4/12 have epilepsy, 6/12 have macrocephaly (more than 3 SD).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5387 AXIN1 Elena Savva gene: AXIN1 was added
gene: AXIN1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: AXIN1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: AXIN1 were set to PMID: 37582359
Phenotypes for gene: AXIN1 were set to Syndromic disease, (MONDO:0002254), AXIN1-related
Review for gene: AXIN1 was set to GREEN
Added comment: PMID: 37582359
- four families (7 individuals) with three homozygous truncating variants.
- all variant shown to result in reduced protein, though 1/3 would be NMD predicted
- Probands had macrocephaly (4/6), GDD (3/7), hip dysplasia (5/6), cardiac anomalies eg. VSD/ASD (3/7), cranial hyperostosis and vertebral endplate sclerosis
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5385 PPP1R3F Andrew Fennell gene: PPP1R3F was added
gene: PPP1R3F was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PPP1R3F was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: PPP1R3F were set to 37531237
Phenotypes for gene: PPP1R3F were set to Neurodevelopmental Disorder, MONDO:0700092,PPP1R3F-related
Review for gene: PPP1R3F was set to GREEN
Added comment: 13 unrelated hemizygous individuals reported with functional evidence
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5377 HIKESHI Zornitza Stark gene: HIKESHI was added
gene: HIKESHI was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: HIKESHI was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HIKESHI were set to 34111619; 26545878
Phenotypes for gene: HIKESHI were set to Leukodystrophy, hypomyelinating, 13, MIM# 616881
Review for gene: HIKESHI was set to GREEN
Added comment: Over 10 individuals reported with recurrent homozygous c.160G>C;p.(Val54Leu) variant, high carrier frequency in the Ashkenazi Jewish population. Optic atrophy reported in several.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.5333 HNRNPC Zornitza Stark gene: HNRNPC was added
gene: HNRNPC was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: HNRNPC was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: HNRNPC were set to 37541189
Phenotypes for gene: HNRNPC were set to Neurodevelopmental disorder (MONDO:0700092), HNRNPC-related
Review for gene: HNRNPC was set to GREEN
Added comment: 13 individuals with global developmental delay, intellectual disability, behavioral abnormalities, and subtle facial dysmorphology with heterozygous HNRNPC germline variants. Five had an identical in-frame deletion of nine amino acids in the extreme C terminus.

Supportive functional data; haploinsufficiency is the mechanism.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5313 SLC4A10 Krithika Murali gene: SLC4A10 was added
gene: SLC4A10 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SLC4A10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC4A10 were set to PMID: 37459438
Phenotypes for gene: SLC4A10 were set to Neurodevelopmental disorderMONDO:0700092, SLC4A10-related
Review for gene: SLC4A10 was set to GREEN
Added comment: PMID: 37459438 Fasham et al 2023 (Brain) report 10 affected individuals from 5 unrelated families with biallelic LoF variants in this gene with a novel neurodevelopmental disorder.

Phenotypic features include hypotonia in infancy, delayed psychomotor development, typically severe ID, progressive postnatal microcephaly, ASD traits, corpus callosal abnormalities and 'slit-like' lateral ventricles. These phenotypic features were recapitulated in knockout mice with additional supportive functional studies.

Isolated seizures was reported in 2/10 cases.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5312 SLC4A10 Krithika Murali gene: SLC4A10 was added
gene: SLC4A10 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SLC4A10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC4A10 were set to PMID: 37459438
Phenotypes for gene: SLC4A10 were set to Neurodevelopmental disorderMONDO:0700092, SLC4A10-related
Review for gene: SLC4A10 was set to GREEN
Added comment: PMID: 37459438 Fasham et al 2023 (Brain) report 10 affected individuals from 5 unrelated families with biallelic LoF variants in this gene with a novel neurodevelopmental disorder.

Phenotypic features include hypotonia in infancy, delayed psychomotor development, typically severe ID, progressive postnatal microcephaly, ASD traits, corpus callosal abnormalities and 'slit-like' lateral ventricles. These phenotypic features were recapitulated in knockout mice with additional supportive functional studies.

Isolated seizures was reported in 2/10 cases.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5308 TMEM63B Zornitza Stark gene: TMEM63B was added
gene: TMEM63B was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TMEM63B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TMEM63B were set to 37421948
Phenotypes for gene: TMEM63B were set to developmental and epileptic encephalopathy, MONDO:0100062, TMEM63B-related
Review for gene: TMEM63B was set to GREEN
Added comment: 17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment were identified with ten distinct heterozygous variants inTMEM63B. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense or in-frame. All individuals had global developmental delay, with moderate-to-profound intellectual disability and severe motor impairment. All individuals had early-onset drug-resistant epilepsy, whose onset ranged from birth to 3 years but occurred within the first year in 14/17 (82%) and in the first month of life in 6/17 (35%).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5306 DHX9 Zornitza Stark gene: DHX9 was added
gene: DHX9 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: DHX9 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DHX9 were set to 37467750
Phenotypes for gene: DHX9 were set to Neurodevelopmental disorder, MONDO:0700092, DHX9-related
Review for gene: DHX9 was set to GREEN
Added comment: PMID:37467750 - 17 unrelated individuals were identified with de novo, ultra-rare, heterozygous missense or loss-of-function DHX9 variants, of which 14 individuals were reported with a neurodevelopmental disorder (NDD) and three were reported with Charcot-Marie-Tooth disease (CMT). All 14 cases with NDD had developmental delay, of which eight were reported with intellectual disability (4 severe, 1 moderate, 3 mild). Two cases did not have ID, one had borderline ID and three cases were too young (0-5 years old). The three cases with CMT presented with adult-onset axonal neuropathy.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5298 TEFM Zornitza Stark gene: TEFM was added
gene: TEFM was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TEFM was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TEFM were set to 36823193
Phenotypes for gene: TEFM were set to Combined oxidative phosphorylation deficiency 58, MIM# 620451
Review for gene: TEFM was set to GREEN
Added comment: Seven individuals from 5 families reported. Presentation predominantly with encephalopathy, seizures and ID, in addition to lactic acidosis.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5282 WBP4 Chirag Patel gene: WBP4 was added
gene: WBP4 was added to Intellectual disability syndromic and non-syndromic. Sources: Other
Mode of inheritance for gene: WBP4 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: WBP4 were set to Neurodevelopmental disorder
Review for gene: WBP4 was set to GREEN
gene: WBP4 was marked as current diagnostic
Added comment: ESHG 2023:
11 individuals from 8 families with homozygous LOF variants in WBP4 gene (4 different variants). Presentation of severe DD and ID, hypotonia, abnormal outer ears, and varying congenital anomalies. WBP4 is spliceosome protein which binds/interacts with SNRNP200. In vivo and in vitro studies previously showed WBP4 enhances splicing and regulates alternative splicing. Patient fibroblasts showed loss of expression of WBP4. RNA sequencing analysis showed abnormal splicing patterns. Proposed spliceosomopathy.
Sources: Other
Intellectual disability syndromic and non-syndromic v0.5275 INTS13 Chirag Patel gene: INTS13 was added
gene: INTS13 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: INTS13 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: INTS13 were set to PMID: 36229431
Phenotypes for gene: INTS13 were set to Oral-facial-digital syndrome
Review for gene: INTS13 was set to GREEN
Added comment: 2 families with 4 affected individuals with Oral-facial-digital (OFD) phenotype. Homozygosity mapping and WES found 2 homozygous variants in INTS13 gene. This is a subunit of the Integrator complex, which associates with RNA Polymerase II and cleaves nascent RNA to modulate gene expression. Variants segregated with disease. Depletion of INTS13 disrupts ciliogenesis in human cultured cells and causes dysregulation of a broad collection of ciliary genes. Knockdown in Xenopus embryos leads to motile cilia anomalies.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5273 DCAF15 Chirag Patel gene: DCAF15 was added
gene: DCAF15 was added to Intellectual disability syndromic and non-syndromic. Sources: Other
Mode of inheritance for gene: DCAF15 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: DCAF15 were set to Cornelia de Lange syndrome
Review for gene: DCAF15 was set to AMBER
Added comment: ESHG 2023:
3 unrelated cases with CdLS (1 x TOP with MCA, 1 x death @20mths, 1 x living child)
Features suggestive of CdLS - DD, microcephaly, CHD, dysmorphism, visual/hearing impairment.

WES identified recurrent de novo variant (p.Ser470Phe) in DCAF15 gene. This mediates ubiquitination and degradation of target proteins, and interacts with cohesin complex members (SMC1/SMC3).

Protein analysis from individuals showed increased accumulation of ubiquitination-modified proteins and SM3 (GOF mechanism). EpiSign analysis showed same DNA methylation pattern as other CdLS cases/genes. Zebrafish model showed reduced body length, reduced head size, reduced oligodendrocytes, heart defect, aberrant motor neurons, and abnormal response to visual/auditory stimuli.
Sources: Other
Intellectual disability syndromic and non-syndromic v0.5271 CYHR1 Chirag Patel gene: CYHR1 was added
gene: CYHR1 was added to Intellectual disability syndromic and non-syndromic. Sources: Other
Mode of inheritance for gene: CYHR1 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: CYHR1 were set to Neurodevelopmental disorder and microcephaly
Review for gene: CYHR1 was set to AMBER
gene: CYHR1 was marked as current diagnostic
Added comment: ESHG 2023:
5 individuals from 3 families with biallelic LOF variants in CYHR1 (aka ZTRAF1). Presentation with microcephaly, hypotonia, DD, and ID. Expression studies showed mislocalisation of CYHR1. Mutant fibroblasts showed increased lysosomal markers and upregulated lysosomal proteins, leading to impaired autophagy. Zebrafish KO however did not show a phenotype.
Sources: Other
Intellectual disability syndromic and non-syndromic v0.5270 GPATCH11 Chirag Patel gene: GPATCH11 was added
gene: GPATCH11 was added to Intellectual disability syndromic and non-syndromic. Sources: Other
Mode of inheritance for gene: GPATCH11 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: GPATCH11 were set to Leber congenital amaurosis and developmental delay
Review for gene: GPATCH11 was set to GREEN
gene: GPATCH11 was marked as current diagnostic
Added comment: ESHG 2023:
3 families with 8 individuals with leber congenital amaurosis, developmental delay, language disorder, and behavioural issues.
GPATCH11 localises to nucleus and basal body of primary cilium (similar to other LCA genes).
Biallelic variants found in GPATCH11 - 1 splice variant common to all 3 families (1 other variant in 3rd family). Splice variant leads to loss of exon 4 (mRNA studies).
Mouse models showed i) abnormal rod/cone responses on ERG; ii) decreased outer nuclear layer in retina, and iii) abnormal associate/episodic memory
Sources: Other
Intellectual disability syndromic and non-syndromic v0.5267 KCNA3 Chirag Patel gene: KCNA3 was added
gene: KCNA3 was added to Intellectual disability syndromic and non-syndromic. Sources: Other
Mode of inheritance for gene: KCNA3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: KCNA3 were set to Neurodevelopmental disorder
Review for gene: KCNA3 was set to GREEN
gene: KCNA3 was marked as current diagnostic
Added comment: ESHG 2023:
10 individuals with de novo missense variants in KCNA3 (K+ channel)
Variable electrophysiology studies of effect of variants (5 x LOF, 4 x GOF, 1 no change)
Presentation: abnormal speech development (8/8), ID (6/8), epilepsy (5/8), and ASD (7/8)
Sources: Other
Intellectual disability syndromic and non-syndromic v0.5258 HCN2 Elena Savva gene: HCN2 was added
gene: HCN2 was added to Intellectual disability syndromic and non-syndromic. Sources: Other
Mode of inheritance for gene: HCN2 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Phenotypes for gene: HCN2 were set to Febrile seizures, familial, 2 MIM#602477; Generalized epilepsy with febrile seizures plus, type 11 MIM#602477; {Epilepsy, idiopathic generalized, susceptibility to, 17} MIM#602477; Neurodevelopmental disorder (MONDO#0700092), HCN2-related
Review for gene: HCN2 was set to AMBER
Added comment: ICG 2023 conference
- cohort of 20 individuals where >80% had a form of intellectual disability (half were severe) and/or seizures. Some had isolated intellectual disability, especially those with a recurring de novo p.E478del.
- Patients were both mono- and biallelic.
- Monoallelic individuals had de novo missense and an inframe deletion. Biallelic individuals had a mix of missense and PTC
Sources: Other
Intellectual disability syndromic and non-syndromic v0.5252 SART3 Daniel Flanagan gene: SART3 was added
gene: SART3 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: SART3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SART3 were set to PMID: 37296101
Phenotypes for gene: SART3 were set to Neurodevelopmental disorder (MONDO#0700092), SART3-related, with 46,XY gonadal dysgenesis
Review for gene: SART3 was set to GREEN
Added comment: Nine individuals from six families presenting with intellectual disability, global developmental delay, a subset of brain anomalies, together with gonadal dysgenesis in 46,XY individuals. Additionally, two individuals had seizures and two had epileptiform activity reported on EEG.

Human induced pluripotent stem cells carrying patient variants in SART3 show disruption to multiple signalling pathways, upregulation of spliceosome components and demonstrate aberrant gonadal and neuronal differentiation in vitro.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.5251 ERI1 Elena Savva gene: ERI1 was added
gene: ERI1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ERI1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ERI1 were set to 37352860
Phenotypes for gene: ERI1 were set to Intellectual disability (MONDO#0001071), ERI1-related
Review for gene: ERI1 was set to GREEN
Added comment: PMID: 37352860 - 8 individuals from 7 unrelated families
- Patients with biallelic missense show a MORE severe spondyloepimetaphyseal dysplasia, syndactyly, brachydactyly/clinodactyly/camptodactyly
- Patients with biallelic null/whole gene deletion had mild ID and digit anomalies including brachydactyly/clinodactyly/camptodactyly
- Patient chet for a missense and PTC variant has a blended phenotype with short stature, syndactyly, brachydactyly/clinodactyly/camptodactyly, mild ID and failure to thrive

- Missense variants were functionally shown to not be able to rescue 5.8S rRNA processing in KO HeLa cells
- K/O mice had neonatal lethality with growth defects, brachydactyly. Skeletal-specific K/O had mild platyspondyly, had more in keeping with patients with null variants than missense

More severe phenotype hypothesised due to "exonuclease-dead proteins may compete for the target RNA molecules with other exonucleases that have functional redundancy
with ERI1, staying bound to those RNA molecules"
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5250 DRG1 Dean Phelan gene: DRG1 was added
gene: DRG1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: DRG1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DRG1 were set to PMID: 37179472
Phenotypes for gene: DRG1 were set to Neurodevelopmental disorder (MONDO:0700092), DRG1-related
Review for gene: DRG1 was set to GREEN
Added comment: PMID: 37179472
- Biallelic variants were identified in four affected individuals from three distinct families with neurodevelopmental disorder with global developmental delay, primary microcephaly, short stature and craniofacial anomalies. Functional studies show the variants result in a loss of function.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5244 RHOBTB2 Zornitza Stark edited their review of gene: RHOBTB2: Added comment: PMID 37165955: 16 individuals with de novo heterozygous missense variants in the BTB domain region and a severe DEE as previously reported. In addition, 6 individuals with de novo missense variants in the GTPase domain and a more variable neurodevelopmental phenotypes with or without epilepsy. In contrast to variants in the BTB domain region, variants in the GTPase domain do not impair proteasomal degradation of RHOBTB2 in vitro, indicating different functional consequences.
In addition, 9 families with observed bi-allelic splice-site and truncating variants with variable neurodevelopmental phenotypes, indicating that complete loss of RHOBTB2 is pathogenic as well.; Changed publications: 29768694, 29276004, 37165955; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.5239 UNC79 Krithika Murali gene: UNC79 was added
gene: UNC79 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: UNC79 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: UNC79 were set to PMID:37183800
Phenotypes for gene: UNC79 were set to Complex neurodevelopmental disorder - MONDO:0100038
Review for gene: UNC79 was set to AMBER
Added comment: PMID:37183800 Bayat et al 2023 report 6 unrelated patients with heterozygous NMD-predicted LoF variants in UNC79 - x1 canonical splice site variant, x5 nonsense/frameshift. 5 were confirmed de novo, 1 not identified in mother - father unavailable for testing. All variants absent in gnomAD and v2 pLI score for UNC79 is 1.

Patients with UNC79 variants were identified through GeneMatcher or an international network of Epilepsy and Genetics departments. x1 patient underwent duo exome sequencing, remaining had trio exome sequencing - no other causative variants identified.

Phenotypic features included:
- 4/6 autistic features
- 5/6 patients mild-moderate ID
- 4/6 behavioural issues (aggression, stereotypies)
- 4/6 epilepsy (focal to bilateral tonic-clonic seizures)
- 5/6 hypotonia

unc79 knockdown drosophila flies exhibited significantly higher rate of seizure-like behaviour than controls. unc79 haploinsufficiency shown to lead to significant reduction in protein levels of both unc79 and unc80 in mouse brains. Unc79 haploinsufficiency associated with deficiency in hippocampal-dependent learning and memory in mice.

Authors have reviewed their own evidence in relation to the gene-disease criteria detailed by Strande et al 2017 and note that their clinical and experimental data provides moderate-level evidence supporting the association between UNC79 and a neurodevelopment disorder including ASD.

Amber association favoured due to clinical phenotypic range reported between affected individuals and their lack of specificity.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5234 ACBD6 Lucy Spencer gene: ACBD6 was added
gene: ACBD6 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ACBD6 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ACBD6 were set to 36457943; 21937992; 35446914
Phenotypes for gene: ACBD6 were set to Neurodevelopmental disorder (MONDO#0700092), ACBD6-related
Review for gene: ACBD6 was set to GREEN
Added comment: PMID: 36457943
2 siblings with a neurodevelopmental disorder: severely delayed development, obesity, pancytopenia, diabetes, liver cirrhosis, intravertebral disc herniation, mild brain atrophy. Consanguineous family both siblings found to have a homozygous frameshift.

This paper also mentioned 3 other reported variants in 6 individuals (only 3 unrelated) all homozygous, 2 frameshift, 1 canonical splice. All reported to have a neurodevelopmental disorder, some with limited information but one family also has obesity, spasticity, and dysmorphism. PMIDs: 21937992, 35446914
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5234 POU3F2 Sarah Pantaleo gene: POU3F2 was added
gene: POU3F2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: POU3F2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: POU3F2 were set to PMID: 37207645
Phenotypes for gene: POU3F2 were set to Autism spectrum disorder, NDD, and adolescent-onset obesity
Penetrance for gene: POU3F2 were set to unknown
Mode of pathogenicity for gene: POU3F2 was set to Other
Review for gene: POU3F2 was set to GREEN
Added comment: We associate ultra-rare variants in POU3F2, encoding a central nervous system transcription factor, with syndromic obesity and neurodevelopment delay in 12 individuals. Demonstrate variant pathogenicity through in vitro analysis. Used exome sequencing, GeneMatcher and Genomics England 100,000 Genomes Project rare disease database.

Both truncating and missense variants in over 10 individuals sharing autism spectrum disorder, NDD, and adolescent-onset obesity (may have had other features eg. CAKUT in 2 individuals, diabetes in two) . Affected individuals presented with low-to-normal birth weight and infantile feeding difficulties but developed insulin resistance and hyperplasia during childhood. With the exception of an early truncating variant, the variants showed adequate nuclear translocation but overall disturbed DNA-binding ability and promoter activation.

Variants absent from population and clinical databases. Almost all constituted putatively non-inherited de novo variants (8/10).

Functional studies provide evidence for loss of function in eight and gain of function in one obesity-associated POU3F2 variant. One variant did not impact POU3F2-promoter activation, leaving the possibility for further path-mechanisms.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5230 MAP4K4 Zornitza Stark commented on gene: MAP4K4: 26 individuals from 21 families reported with Rasopathy-like phenotype, comprising ID/DD, dysmorphic features and congenital anomalies.
Intellectual disability syndromic and non-syndromic v0.5230 MCM6 Suliman Khan gene: MCM6 was added
gene: MCM6 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: MCM6 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MCM6 were set to PMID: 37198333
Phenotypes for gene: MCM6 were set to Neurodevelopmental disorder, MONDO:0700092, MCM6-related
Review for gene: MCM6 was set to GREEN
Added comment: PMID: 37198333 reported 5 unrelated families with de novo variants in MCM6 gene. Two patients with the same missense variant p.(Cys158Tyr) in zinc finger domain presented with intra-uterine growth retardation, short stature, congenital microcephaly, endocrine features, developmental delay and urogenital anomalies.

In other three unrelated individuals different de novo missense variants were identified in the oligo nucleotide binding (OB)-fold domain. These patients had variable neurodevelopmental features including autism spectrum disorder, developmental delay, and epilepsy.

The clinical features and functional defects related to the zinc binding residue resembled those observed in syndromes related to other MCM components and DNA replication factors (Meier–Gorlin syndrome and Seckel syndrome), while de novo OB-fold domain missense variants were associated with more variable neurodevelopmental phenotypes (PMID: 37198333).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5219 CNOT9 Karina Sandoval gene: CNOT9 was added
gene: CNOT9 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CNOT9 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: CNOT9 were set to PMID: 37092538
Phenotypes for gene: CNOT9 were set to neurodevelopmental disorder, MONDO:0700092
Review for gene: CNOT9 was set to GREEN
Added comment: 7 individuals with de novo variants. In silico predictions of functional relevance. All affected persons have DD/ID, with five of them showing seizures. Other symptoms include.

Symptoms: Neuro dev disorder. ID, Epilepsy. All affected persons have DD/ID, with five of them showing seizures. Other symptoms include muscular hypotonia, facial dysmorphism, and behavioral abnormalities.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5219 CBX1 Daniel Flanagan gene: CBX1 was added
gene: CBX1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: CBX1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CBX1 were set to PMID: 37087635
Phenotypes for gene: CBX1 were set to Neurodevelopmental disorder (MONDO#0700092), CBX1-related
Review for gene: CBX1 was set to GREEN
Added comment: Three different de novo missense variants identified in three unrelated individuals with developmental delay, hypotonia, autistic features, and variable dysmorphic features such as broad forehead and head circumference above average. Mutant mice displayed increased latency-to-peak response, suggesting the possibility of synaptic delay or myelination deficits. Functional studies confirmed the reduction of mutant HP1β binding to heterochromatin.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.5216 INTS11 Melanie Marty gene: INTS11 was added
gene: INTS11 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: INTS11 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: INTS11 were set to PMID: 37054711
Phenotypes for gene: INTS11 were set to Global developmental delay; launguage delay; intellectual disability; impaired motor development; brain atrophy
Review for gene: INTS11 was set to GREEN
Added comment: PMID: 37054711 - 15 individuals from 10 unrelated families with bi-allelic variants in INTS11 with global developmental and language delay, intellectual disability, impaired motor development, and brain atrophy.

Functional studies in Drosophila showed that dIntS11 (fly ortholog of INTS11) is essential and expressed in the central nervous systems in a subset of neurons and most glia in larval and adult stages.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5216 SRSF1 Paul De Fazio gene: SRSF1 was added
gene: SRSF1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SRSF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SRSF1 were set to 37071997
Phenotypes for gene: SRSF1 were set to Neurodevelopmental disorder, SRSF1-related MONDO:0700092
Review for gene: SRSF1 was set to GREEN
gene: SRSF1 was marked as current diagnostic
Added comment: 17 individuals from 16 families reported with mostly de novo variants. Variants were a mixture of missense, nonsense/frameshift (both NMD-predicted and not NMD-predicted) and microdeletions. In one family, only one parent was available for testing. In another family, 2 affected siblings had the variant but the variant was not identified in either parent suggesting germline mosaicism.

Functional testing of a subset of variants in Drosophila supported pathogenicity in most, but 2 missense variants showed no functional effect and were classified VUS. Episignature analysis (EpiSign) on patient DNA from blood showed a specific DNA methylation signature in patients with the variants classified pathogenic but not those classified VUS.

Phenotypes included mainly neurological abnormalities (mild to moderate ID/dev delay, motor delay, speech delay, and behavioural disorders) and facial dysmorphisms.

Other features included hypotonia (11/16), variable brain abnormalities on MRI (6/12), variable cardiac malformations (6/14). urogenital malformations e.g. hypospadias, cryptorchidism (6/13), scoliosis (5/17) and/or variable other skeletal abnormalities (10/17).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5214 GATAD2A Bryony Thompson gene: GATAD2A was added
gene: GATAD2A was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: GATAD2A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GATAD2A were set to https://doi.org/10.1016/j.xhgg.2023.100198; 17565372
Phenotypes for gene: GATAD2A were set to Neurodevelopmental disorder, MONDO:0700092, GATAD2A-related
Review for gene: GATAD2A was set to GREEN
Added comment: https://doi.org/10.1016/j.xhgg.2023.100198 - Five unrelated individuals with a neurodevelopmental disorder identified with 3 missense & 2 LoF (4 de novo & 1 unknown inheritance). The shared clinical features with variable expressivity include global developmental delay (4/4), craniofacial dysmorphism (3/5), structural brain defects (2/3), musculoskeletal anomalies (3/5), vision/hearing defects (2/3), gastrointestinal/renal defects (2/3). Loss of function is the expected mechanism of disease. In vitro assays of one of the missense variants (p.Cys420Tyr) demonstrates disruption of GATAD2A integration with CHD3, CHD4, and CHD5
PMID: 17565372 - null mouse model is embryonic lethal.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5198 CRIPT Karina Sandoval commented on gene: CRIPT: PMID: 37013901 identified 6 individuals with Rothmund-Thomson syndrome characterised by poikiloderma, sparse hair, small stature, skeletal defects, cancer, cataracts, resembling features of premature aging. Two new variants identified and 4 were already published. 5 were hom, 1 was chet, all with different variants.
All CRIPT individuals fulfilled the diagnostic criteria for RTS, and additionally had neurodevelopmental delay and seizures.

CRIPT-deficient fibroblasts showed an unremarkable mitotic progression and unremarkable number of mitotic errors,

c.132del p.(Ala45Glyfs*82), hom
c.227G>A, p.(Cys76Tyr), hom
c.133_134insGG,p.(Ala45Glyfs*82),hom
c.141del p.(Phe47Leufs*84), hom
c.8G>A p.(Cys3Tyr), 1,331 bp del exon 1, chet
c.7_8del; p.(Cys3Argfs*4), hom
Intellectual disability syndromic and non-syndromic v0.5196 SNAPC4 Ee Ming Wong changed review comment from: - Ten individuals from eight families with neurodevelopmental disorder found to be compound heterozygous for variants in SNAPC4
- Identified variants included 6x missense, 1x nonsense, 1x frameshift and 6x splice
- Depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing, similarly observed in patient fibroblasts
Sources: Literature; to: - Ten individuals from eight families with neurodevelopmental disorder found to be biallelic for variants in SNAPC4
- Identified variants included 6x missense, 1x nonsense, 1x frameshift and 6x splice
- Depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing, similarly observed in patient fibroblasts
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5195 SNAPC4 Ee Ming Wong gene: SNAPC4 was added
gene: SNAPC4 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SNAPC4 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SNAPC4 were set to 36965478
Phenotypes for gene: SNAPC4 were set to Neurodevelopmental disorder (MONDO#0700092), SNAPC4-related
Review for gene: SNAPC4 was set to GREEN
gene: SNAPC4 was marked as current diagnostic
Added comment: - Ten individuals from eight families with neurodevelopmental disorder found to be compound heterozygous for variants in SNAPC4
- Identified variants included 6x missense, 1x nonsense, 1x frameshift and 6x splice
- Depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing, similarly observed in patient fibroblasts
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5195 ESAM Chern Lim gene: ESAM was added
gene: ESAM was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ESAM was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ESAM were set to 36996813
Phenotypes for gene: ESAM were set to Neurodevelopmental disorder (MONDO#0700092), ESAM-related
Review for gene: ESAM was set to GREEN
gene: ESAM was marked as current diagnostic
Added comment: PMID 36996813:
- Thirteen affected individuals, including four fetuses, from eight unrelated families, with homozygous loss-of-function-type variants in ESAM – 2 of the variants are frameshifts, 1x nonsense, 1x canonical splice.
- Affected individuals have profound global developmental delay/unspecified intellectual disability, epilepsy, absent or severely delayed speech, varying degrees of spasticity, ventriculomegaly, and ICH/cerebral calcifications, the latter being also observed in the fetuses.
- One of the frameshift variant c.115del (p.Arg39Glyfs*33), was detected in six individuals from four unrelated families from the same geographic region in Turkey (southeastern Anatolia), suggesting a founder effect.
- The c.451+1G>A variant was detected in three individuals from two independent families with the same ethnic origin (Arab Bedouin)
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5183 RRAS2 Elena Savva gene: RRAS2 was added
gene: RRAS2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: RRAS2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: RRAS2 were set to PMID: 31130282; 31130285
Phenotypes for gene: RRAS2 were set to Noonan syndrome 12 MIM#618624
Mode of pathogenicity for gene: RRAS2 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: RRAS2 was set to AMBER
Added comment: Gene has an established GOF mechanism

PMID: 31130282 - 3/9 individuals had mild learning difficulties or mild GDD

PMID: 31130285 - 1/3 individuals had mild ID, 1/3 had severe ID, 1/3 normal
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5181 AMOTL1 Lucy Spencer gene: AMOTL1 was added
gene: AMOTL1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: AMOTL1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: AMOTL1 were set to 36751037
Phenotypes for gene: AMOTL1 were set to Orofacial clefting syndrome, MONDO:0015335, AMOTL1-related
Review for gene: AMOTL1 was set to GREEN
Added comment: PMID: 36751037- 16 individuals from 12 families with orofacial clefting syndrome and het variants in AMOTL1. Many in 1 hotspot: 5 individuals from 3 families have R157C, 6 individuals from another 4 families have R157H, 1 has P160L, and another has Q161R. Out of this hostpaot- 1 with P368A, 1 with E507K, 1 with E579K. 7 are de novo. All but 2 have clefting, 7 are dysmorphic, 5 have hearing loss, 9 have CHD, 7 have tall stature, 6 have dev delay. Other features include liver disease, myopia, scoliosis and immune involvement.

Another 2 families have been previously reported (described in the panelapp review in mendeliome) with variants in this hotspot 1 has 2 individuals with R157C, the other has 1 individual with P160L. All hotspot are absent from gnomad v2.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5180 SLC35B2 Zornitza Stark gene: SLC35B2 was added
gene: SLC35B2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SLC35B2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC35B2 were set to 35325049
Phenotypes for gene: SLC35B2 were set to Leukodystrophy, hypomyelinating, 26, with chondrodysplasia, MIM# 620269
Review for gene: SLC35B2 was set to AMBER
Added comment: 2 x individuals with homozygous variants (c.1218_1220del and c.1224_1225del) in SLC35B2. Phenotypes included pre- and postnatal growth retardation, scoliosis, severe motor and intellectual disabilities and hypomyelinating leukodystrophy. Functional analysis on patient cells showed that the variants result in a decreased expression of mRNA and affect protein subcellular localization leading to functional impairment of the protein.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5177 ATG4D Suliman Khan gene: ATG4D was added
gene: ATG4D was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ATG4D was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ATG4D were set to PMID: 36765070
Phenotypes for gene: ATG4D were set to neurodevelopmental disorder; Abnormal facial shape
Penetrance for gene: ATG4D were set to unknown
Review for gene: ATG4D was set to GREEN
Added comment: PMID: 36765070 reported three individuals from two unrelated families with a neurodevelopmental disorder characterized by speech and motor impairment with a similar facial gestalt comprising almond-shaped eyes, depressed nasal bridge, and a prominent Cupid’s bow with variable disease severity and progression. NGS analysis revealed bi-allelic loss-of-function variants in ATG4D gene. Based on the clinical, bioinformatic, and functional data, the author concluded that bi-allelic loss-of-function variants in ATG4D contribute to the pathogenesis of syndromic neurodevelopmental disorder.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5160 FICD Elena Savva gene: FICD was added
gene: FICD was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: FICD was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FICD were set to 36704923
Phenotypes for gene: FICD were set to Neurodevelopmental disorder, FICD-related (MONDO#0700092)
Review for gene: FICD was set to AMBER
Added comment: PMID: 36704923:
- five individuals (3 families) w/ infancy onset diabetes mellitus (5/5) and severe neurodevelopmental delay (4/5)
- all homozygous for p.R371S
- variant expression in E. coli showed loss of affinity, deregulates BiP-AMP and affects secretion
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5159 OGDH Zornitza Stark gene: OGDH was added
gene: OGDH was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: OGDH was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: OGDH were set to 36520152; 32383294
Phenotypes for gene: OGDH were set to Oxoglutarate dehydrogenase deficiency, MIM# 203740
Review for gene: OGDH was set to GREEN
Added comment: 6 individuals reported with bi-allelic variants in this gene and DD.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5158 CCDC84 Lucy Spencer gene: CCDC84 was added
gene: CCDC84 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CCDC84 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CCDC84 were set to 34009673
Phenotypes for gene: CCDC84 were set to Mosaic variegated aneuploidy syndrome 4 (MIM#620153)
Review for gene: CCDC84 was set to AMBER
Added comment: PMID: 34009673- patients with constitutional mosaic aneuploidy were found to have biallelic mutations in CENATAC(CCDC84). 2 adult siblings with mosaic aneuploidies, microcephaly, dev delay, and maculopathy. Both chet for a missense and a splice site deletion- but the paper days these both result in the creation of a novel splice site that leads to frameshifts and loss of the c-terminal 64 amino acids.

Gene is shown to be part of a spliceosome. CENATAC depletion or expression of disease mutants resulted in retention of introns in ~100 genes enriched for nucleocytoplasmic transport and cell cycle regulation, and caused chromosome segregation errors.

Functional analysis in CENATAC-depleted HeLa cells demonstrated chromosome congression defects and subsequent mitotic arrest, which could be fully rescued by wildtype but not mutant CENATAC. Expression of the MVA-associated mutants exacerbated the phenotype, suggesting that the mutant proteins dominantly repress the function of any residual wildtype protein.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5154 FGF13 Zornitza Stark edited their review of gene: FGF13: Added comment: PMID 34184986: 3 individuals reported with moderate to severe ID and maternally inherited 5' variant c.-32C-G; Changed publications: 33245860, 34184986; Changed phenotypes: Developmental and epileptic encephalopathy 90, MIM# 301058, Intellectual developmental disorder, X-linked 110, MIM# 301095
Intellectual disability syndromic and non-syndromic v0.5150 NAE1 Zornitza Stark gene: NAE1 was added
gene: NAE1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: NAE1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NAE1 were set to 36608681
Phenotypes for gene: NAE1 were set to Neurodevelopmental disorder, MONDO:0700092, NAE1-related
Review for gene: NAE1 was set to GREEN
Added comment: Four individuals reported with bi-allelic variants and intellectual disability, ischiopubic hypoplasia, stress-mediated lymphopenia and neurodegeneration.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5148 TRPC5 Zornitza Stark gene: TRPC5 was added
gene: TRPC5 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TRPC5 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: TRPC5 were set to 36323681; 24817631; 23033978; 33504798; 28191890
Phenotypes for gene: TRPC5 were set to Neurodevelopmental disorder, MONDO:0700092, TRPC5-related
Review for gene: TRPC5 was set to AMBER
Added comment: PMID: 36323681; Leitão E. et al. (2022) Nat Commun.13(1):6570:
Missense variant NM_012471.2:c.523C>T, p.(Arg175Cys in three brothers with intellectual disability (ID) and autistic spectrum disorder (ASD), inherited from an asymptomatic mother and absent in the maternal grandparents.
Whole cell patch clamp studies of HEK293 created by site-directed mutagenesis showed increased current of this calcium channel (constitutively opened).
(This variant is absent in gnomAD v2.1.1).

Also, the nonsense variant, c.965G> A, p.(Trp322*) was found in a high functioning ASD male (maternally inherited), NMD-predicted.

Other papers and TRPC5 variants that were cited to associate this gene with X-linked ID and/or ASD include:
PMID: 24817631; Mignon-Ravix, C. et al. (2014) Am. J.Med. Genet. A 164A: 1991–1997: A hemizygous 47-kb deletion in Xq23 including exon 1 of the TRPC5 gene. He had macrocephaly, delayed psychomotor development, speech delay, behavioural problems, and autistic features. Maternally inherited, and a family history compatible with X-linked inheritance (i.e., maternal great uncle was also affected, although not tested).

In addition, PMID: 36323681; Leitão E. et al. (2022) cites papers with the variants p.(Pro667Thr), p.(Arg71Gln) and p.(Trp225*).
NB. p.(Pro667Thr) is absent in gnomAD (v2.1.1), p.(Arg71Gln) is also absent (the alternative variant p.(Arg71Trp) is present once as heterozygous only). p.(Trp225*) is absent, and it should be noted that PTCs / LoF variants are very rare (pLI = 1).

However, looking further into the three references, the evidence is not as clear or as accurate as was stated.

The missense variant c.1999C>A, p.(Pro667Thr), was stated as de novo, but was actually maternally inherited but was still considered a candidate for severe intellectual disability (shown in the Appendix, Patient 93, with severe speech delay, autism spectrum disorder and Gilles de la Tourette). This patient also has a de novo MTF1 variant. Reference: PMID: 23033978; de Ligt, J. et al. (2012) N. Engl. J. Med. 367: 1921–1929).

Missense variant (de novo): c.212G>A, p.(Arg71Gln), was found as part of the Deciphering Developmental Disorders (DDD) study and is shown in individual 164 in Supplementary Table 2 of PMID: 33504798; Martin, HC. et al. (2021) Nat. Commun.12: 627. Also displayed in DECIPHER (DDD research variant) with several phenotype traits, but ID and ASD are not specifically mentioned.

Nonsense variant: c.674G>A. p.(Trp225*) was stated as de novo but was inherited (reference PMID: 28191890; Kosmicki, JA. et al. (2017) Nat. Genet. 49: 504–510. Supplement Table 7). This was a study of severe intellectual delay, developmental delay / autism. (NB. The de novo p.(Arg71Gln) variant from the DDD study is also listed (subject DDD 342 in Supplement 4 / Table 2).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5134 EIF4A2 Dean Phelan gene: EIF4A2 was added
gene: EIF4A2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: EIF4A2 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: EIF4A2 were set to PMID: 36528028
Phenotypes for gene: EIF4A2 were set to Neurodevelopmental disorder (MONDO:0700092), EIF4A2-related
Mode of pathogenicity for gene: EIF4A2 was set to Other
Review for gene: EIF4A2 was set to GREEN
Added comment: PMID: 36528028
- EIF4A2 variants were observed in 15 individuals from 14 families. Affected individuals had a range of symptoms including global developmental delay (9/15), ID (7/15), epilepsy (11/15) and structural brain alterations (10/15). Monoallelic and biallelic variants were reported and functional studies showed both LOF and GOF disease mechanisms.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5134 TRA2B Elena Savva gene: TRA2B was added
gene: TRA2B was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TRA2B was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: TRA2B were set to PMID: 36549593
Phenotypes for gene: TRA2B were set to Neurodevelopmental disorder, TRA2B-related (MONDO#0700092)
Review for gene: TRA2B was set to GREEN
Added comment: PMID: 36549593
- 12 individuals with ID and dev delay. Additional features include infantile spams 6/12, hypotonia 12/12, dilated brain ventricles 6/12, microcephaly 5/12
- All variants result in the loss of 1/2 transcripts (start-losses or PTCs upstream of a second translation start position). Shorter transcript expression is increased, longer transcript expression is decreased.
- Apparently het mice K/O are normal, but complete K/O cannot develop embryonically.
- DN mechanism suggested
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5127 SETD2 Zornitza Stark edited their review of gene: SETD2: Added comment: PMID 32710489: 12 unrelated patients, ranging from 1 month to 12 years of age, with a multisystemic neurodevelopmental disorder associated with a specific de novo heterozygous mutation in the SETD2 gene (R1740W).

Key clinical features: severely impaired global development apparent from infancy, feeding difficulties with failure to thrive, small head circumference, and dysmorphic facial features. Affected individuals have impaired intellectual development and hypotonia; they do not achieve walking or meaningful speech. Other neurologic findings may include seizures, hearing loss, ophthalmologic defects, and brain imaging abnormalities. There is variable involvement of other organ systems, including skeletal, genitourinary, cardiac, and possibly endocrine.

Further 3 unrelated patients identified with mild to moderately impaired intellectual development associated with a specific de novo heterozygous mutation in the SETD2 gene (R1740Q).

These are distinct clinically from Luscan-Lumish syndrome, which is characterised by overgrowth.; Changed publications: 29681085, 32710489; Changed phenotypes: Luscan-Lumish syndrome, MIM#616831, Rabin-Pappas syndrome,MIM# 620155, Intellectual developmental disorder, autosomal dominant 70, MIM# 620157
Intellectual disability syndromic and non-syndromic v0.5121 FZR1 Zornitza Stark gene: FZR1 was added
gene: FZR1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert Review
Mode of inheritance for gene: FZR1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FZR1 were set to 34788397
Phenotypes for gene: FZR1 were set to Developmental and epileptic encephalopathy 109, MIM# 620145
Review for gene: FZR1 was set to GREEN
Added comment: Four unrelated individuals reported with de novo missense variants in this gene. Affected individuals had developmental delay before and concurrent with the onset of seizures. Features included impaired intellectual development with poor speech, ataxic gait, coordination problems, and behavioral abnormalities. Drosophila model supports gene-disease association.
Sources: Expert Review
Intellectual disability syndromic and non-syndromic v0.5060 CBS Lloyd Pereira changed review comment from: Listed in OMIM with a strong disease association (MIM #236200 homocysteinuria).

Multiple experimental and clinical studies demonstrate link between CBS and homocysteinuria (see below):

Multiple LOF variants classified as pathogenic or likely pathogenic in ClinVar and reported in the literature in multiple homozygote and compound heterozygote individuals affected with homocystinuria, e.g. c.19dup p.(Gln7fs) (PMID: 25218699; 12124992) and c.919G>A p.(Gly307Ser) (PMID: 7506602, 7581402, 8744616, 9889017, 23733603).

Multiple CBS variants reported in CBS deficiency (PMID: 12124992).

ClinGen classify as definitive for Homocysteinuria. Clingen states- Twenty-one unique variants were curated (missense, nonsense, frameshift, and splice site) in 15 probands from 8 publications, and three of these probands each had two affected siblings in whom CBS variants were identified (PMID 1301198, 10408774, 7762555, 12815602, 16307898, 25455305, 26667307, 29508359). Gene-disease relationship is supported by the biochemical function of CBS, which is consistent with the biochemical features in patients with homocystinuria (including elevated plasma total homocysteine and methionine) (PMID 13654400, 15890029), functional studies in yeast, bacteria, and cultured cells, including chaperone studies in fibroblasts from patients with homocystinuria (PMID 9590298, 25331909), as well as the biochemical and clinical features of mouse models (PMID 18987302) and enzyme replacement studies in mice (PMID 29398487).

Recent review reports on role of CBS in down syndrome (PMID: 31955501). However, caveat that multiple genes are associated with down syndrome. Not a strong body of research available linking CBS variants and down syndrome.; to: Listed in OMIM with a strong disease association (MIM #236200 homocysteinuria).

Multiple experimental and clinical studies demonstrate link between CBS and homocysteinuria (see below):

Multiple LOF variants classified as pathogenic or likely pathogenic in ClinVar and reported in the literature in multiple homozygote and compound heterozygote individuals affected with homocystinuria, e.g. c.19dup p.(Gln7fs) (PMID: 25218699; 12124992) and c.919G>A p.(Gly307Ser) (PMID: 7506602, 7581402, 8744616, 9889017, 23733603).

Multiple CBS variants reported in CBS deficiency (PMID: 12124992).

ClinGen classify as definitive for Homocysteinuria. Clingen states- Twenty-one unique variants were curated (missense, nonsense, frameshift, and splice site) in 15 probands from 8 publications, and three of these probands each had two affected siblings in whom CBS variants were identified (PMID 1301198, 10408774, 7762555, 12815602, 16307898, 25455305, 26667307, 29508359). Gene-disease relationship is supported by the biochemical function of CBS, which is consistent with the biochemical features in patients with homocystinuria (including elevated plasma total homocysteine and methionine) (PMID 13654400, 15890029), functional studies in yeast, bacteria, and cultured cells, including chaperone studies in fibroblasts from patients with homocystinuria (PMID 9590298, 25331909), as well as the biochemical and clinical features of mouse models (PMID 18987302) and enzyme replacement studies in mice (PMID 29398487).

Recent review reports on role of CBS in down syndrome (PMID: 31955501). However, caveat that multiple genes are associated with down syndrome. Not a strong body of research available linking CBS variants and down syndrome.
Intellectual disability syndromic and non-syndromic v0.5053 TCEAL1 Melanie Marty gene: TCEAL1 was added
gene: TCEAL1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TCEAL1 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: TCEAL1 were set to PMID: 36368327
Phenotypes for gene: TCEAL1 were set to hypotonia; abnormal gait; developmental delay; intellectual disability; autism; dysmorphic facial features.
Review for gene: TCEAL1 was set to GREEN
Added comment: 7 individuals (males and females) with de novo variants involving TCEAL1 with an X-linked
dominant neurodevelopmental syndrome. Individuals had hypotonia, abnormal gait, developmental delay/intellectual disability especially affecting expressive language, autistic-like behavior, and mildly dysmorphic facial features. Additional features included strabismus, refractive errors, variable nystagmus, gastroesophageal reflux, constipation, dysmotility, recurrent infections, seizures, and structural brain anomalies.

1 additional male individual with a maternally inherited missense variant (unaffected mother), which was considered a VUS. This individual had hypertonia and spasticity without syndromic features.

4 PTCs, 2 CNVs, 2 missense reported.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5050 KDM2B Ain Roesley gene: KDM2B was added
gene: KDM2B was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: KDM2B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KDM2B were set to 36322151
Phenotypes for gene: KDM2B were set to neurodevelopmental disorder MONDO#070009, KDM2B-related
Review for gene: KDM2B was set to GREEN
gene: KDM2B was marked as current diagnostic
Added comment: 27 individuals from 22 families were recruited
13 SNV classified LP/P, all de novo except 2 familial cases
5 variants were classified as VUS if more than 1 het is present in gnomAD or does result in a KDM2B-specific episignature (therefore suggesting normal function)
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5041 ARPC4 Zornitza Stark gene: ARPC4 was added
gene: ARPC4 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ARPC4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ARPC4 were set to 35047857
Phenotypes for gene: ARPC4 were set to Developmental delay, language impairment, and ocular abnormalities, MIM# 620141
Review for gene: ARPC4 was set to GREEN
Added comment: 7 affected individuals from 6 families (gonadal mosaicism was confirmed in the mother of the 2 affected siblings) with a recurrent missense variant (NM_005718.4:c.472C>T; p.R158C). 6/7 affected individuals had microcephaly. The variant was associated with a decreased amount of F-actin in cells from two affected individuals.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5040 EXOSC3 Michelle Dang changed review comment from: Association with global developmental delay, hypotonia, hyperreflexia, cerebellar (+/- pontine) atrophy with variable severity. Assessment of cognitive function/IQ limited by motor and speech impairments. Severe forms associated with early deaths during infancy periods. Intellectual impairment/psychomotor retardation (to varying degrees) reported in all cases across varying degrees of severity (23284067). Zanni et al (23975261) identified 2 individuals with compound heterozygous mutations resulting in intellectual impairment and early onset spasticity. Wan et al (22544365) described global developmental delay in addition to cerebellar features and spinal motor degeneration.; to: Association with global developmental delay, hypotonia, hyperreflexia, cerebellar (+/- pontine) atrophy with variable severity. Assessment of cognitive function/IQ limited by motor and speech impairments. Severe forms associated with early deaths during infancy periods.
Intellectual impairment/psychomotor retardation (to varying degrees) reported in all cases across varying degrees of severity (23284067). Zanni et al (23975261) identified 2 individuals with compound heterozygous mutations resulting in intellectual impairment and early onset spasticity. Wan et al (22544365) described global developmental delay in addition to cerebellar features and spinal motor degeneration, with functional effects of the mutation reproduced with knocked down endogenous expression of exosc3 in zebrafish embryos and subsequent rescue of the phenotype by co-injection with wild-type zebrafish exosc3 mRNA.
Intellectual disability syndromic and non-syndromic v0.5040 EXOSC3 Michelle Dang changed review comment from: Association with global developmental delay, hypotonia, hyperreflexia, cerebellar (+/- pontine) atrophy with variable severity. Assessment of cognitive function/IQ limited by motor and speech impairments. Severe forms associated with early deaths during infancy periods. Intellectual impairment/psychomotor retardation (to varying degrees) reported in all cases across various severity (23284067). Zanni et al (23975261) identified 2 individuals with compound heterozygous mutations resulting in intellectual impairment and early onset spasticity. Wan et al (22544365) described global developmental delay in addition to cerebellar features and spinal motor degeneration.; to: Association with global developmental delay, hypotonia, hyperreflexia, cerebellar (+/- pontine) atrophy with variable severity. Assessment of cognitive function/IQ limited by motor and speech impairments. Severe forms associated with early deaths during infancy periods. Intellectual impairment/psychomotor retardation (to varying degrees) reported in all cases across varying degrees of severity (23284067). Zanni et al (23975261) identified 2 individuals with compound heterozygous mutations resulting in intellectual impairment and early onset spasticity. Wan et al (22544365) described global developmental delay in addition to cerebellar features and spinal motor degeneration.
Intellectual disability syndromic and non-syndromic v0.5040 EXOSC3 Michelle Dang edited their review of gene: EXOSC3: Added comment: Association with global developmental delay, hypotonia, hyperreflexia, cerebellar (+/- pontine) atrophy with variable severity. Assessment of cognitive function/IQ limited by motor and speech impairments. Severe forms associated with early deaths during infancy periods. Intellectual impairment/psychomotor retardation (to varying degrees) reported in all cases across various severity (23284067). Zanni et al (23975261) identified 2 individuals with compound heterozygous mutations resulting in intellectual impairment and early onset spasticity. Wan et al (22544365) described global developmental delay in addition to cerebellar features and spinal motor degeneration.; Changed phenotypes: Cerebellar atrophy, Developmental delay, Lower motor neuron degeneration, Upper motor neuron features, Spasticity/hyperreflexia (+/-)
Intellectual disability syndromic and non-syndromic v0.5040 EXOSC3 Michelle Dang changed review comment from: Association with global developmental delay, hypotonia, hyperreflexia, cerebellar (+/- pontine) atrophy. Variable severity. Assessment of cognitive function/IQ limited by motor and speech impairments. Severe forms associated with early deaths during infancy periods. Intellectual impairment (to varying degrees) reported in all cases across various severity.; to: Association with global developmental delay, hypotonia, hyperreflexia, cerebellar (+/- pontine) atrophy with variable severity. Assessment of cognitive function/IQ limited by motor and speech impairments. Severe forms associated with early deaths during infancy periods. Intellectual impairment/psychomotor retardation (to varying degrees) reported in all cases across various severity (23284067). Zanni et al (23975261) identified 2 individuals with compound heterozygous mutations resulting in intellectual impairment and early onset spasticity. Wan et al (22544365) described global developmental delay in addition to cerebellar features and spinal motor degeneration.
Intellectual disability syndromic and non-syndromic v0.5029 SPTAN1 Zornitza Stark edited their review of gene: SPTAN1: Added comment: Another 21 individuals reported in PMID 36331550; some had DEE and others had isolated ID.; Changed publications: 20493457, 22258530, 32811770, 36331550
Intellectual disability syndromic and non-syndromic v0.5023 SMC5 Zornitza Stark gene: SMC5 was added
gene: SMC5 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SMC5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SMC5 were set to 36333305
Phenotypes for gene: SMC5 were set to Multiple congenital anomalies/dysmorphic syndrome, MONDO:0019042, SLF2-related; Atelis syndrome; microcephaly; short stature; ID
Review for gene: SMC5 was set to GREEN
Added comment: Four individuals from three families with a chromosome breakage disorder and bi-allelic variants in this gene. However, three of the individuals had the same homozygous missense variant. Evidence for functional impact of the variant was limited. However, zebrafish model recapitulated the phenotype and was not rescued by the introduction of this variant, arguing for functional effect. Borderline Amber/Green.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5021 SLF2 Zornitza Stark gene: SLF2 was added
gene: SLF2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SLF2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLF2 were set to 36333305
Phenotypes for gene: SLF2 were set to Multiple congenital anomalies/dysmorphic syndrome, MONDO:0019042, SLF2-related; Atelis syndrome; microcephaly; short stature; ID
Review for gene: SLF2 was set to GREEN
Added comment: Seven individuals from 6 families with a chromosome breakage disorder and bi-allelic variants in this gene (LoF). Functional data including zebrafish model.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.5016 WDR5 Bryony Thompson gene: WDR5 was added
gene: WDR5 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: WDR5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: WDR5 were set to DOI:https://doi.org/10.1016/j.xhgg.2022.100157
Phenotypes for gene: WDR5 were set to Neurodevelopmental disorder MONDO:0700092, WDR5-related
Mode of pathogenicity for gene: WDR5 was set to Other
Review for gene: WDR5 was set to GREEN
Added comment: Six different missense variants were identified (de novo) in 11 affected individuals with neurodevelopmental disorders, with a broad spectrum of additional features, including epilepsy, aberrant growth parameters, skeletal and cardiac abnormalities. 9/11 probands have ID. In vivo and in vitro functional suggest that loss-of-function is not the mechanism of disease. The mechanism of disease is yet to be established.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4991 FRMD5 Zornitza Stark gene: FRMD5 was added
gene: FRMD5 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: FRMD5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Review for gene: FRMD5 was set to GREEN
Added comment: Eight individuals reported with missense variants in this gene, de novo in 6 where parents were available. Clinical presentation was with ID, seizures, ataxia. Fly model.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4986 DPH5 Zornitza Stark gene: DPH5 was added
gene: DPH5 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: DPH5 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: DPH5 were set to Neurodevelopmental disorder with short stature, prominent forehead, and feeding difficulties 620070
Review for gene: DPH5 was set to GREEN
Added comment: 5 individuals from 3 unrelated families reported with severe ID, feeding difficulties, dysmorphic features and congenital anomalies, though there was no consistent pattern to these.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4975 GABBR1 Zornitza Stark gene: GABBR1 was added
gene: GABBR1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: GABBR1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GABBR1 were set to 36103875
Phenotypes for gene: GABBR1 were set to Neurodevelopmental disorder, GABBR1-related, MONDO:0700092
Review for gene: GABBR1 was set to GREEN
Added comment: Four individuals with de novo variants in this gene and varying severity of DD/ID, seizures and hypotonia.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4974 LETM1 Ee Ming Wong gene: LETM1 was added
gene: LETM1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: LETM1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LETM1 were set to 36055214
Phenotypes for gene: LETM1 were set to Mitochondrial disease MONDO#0044970, LETM1-related
Review for gene: LETM1 was set to GREEN
gene: LETM1 was marked as current diagnostic
Added comment: -18 affected individuals from 11 unrelated families harbouring ultra-rare bi-allelic missense and loss-of-function LETM1 variants
-Most of the affected individuals (14/18, 78%) had an infantile-onset disease manifestation,
and 4/18 (22%) presented first symptoms between the ages of 1.5 and 2 years
-Variant types included missense, frameshift, stop loss, in-frame deletion and splice defect
-From biochemical and morphological studies, bi-allelic LETM1 variants are associated with defective mitochondrial K efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4965 MTSS1 Elena Savva gene: MTSS1 was added
gene: MTSS1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: MTSS1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MTSS1 were set to PMID: 36067766
Phenotypes for gene: MTSS1 were set to Intellectual disability, MTSS1-related (MONDO#0001071)
Review for gene: MTSS1 was set to GREEN
Added comment: Alt gene name: MTSS2

Huang (2022): recurring de novo missense variant (p.R671W) causing syndromic intellectual disability in 5 unrelated individuals.
- Individuals present with GDD, mild ID (5/5), nystagmus (3/5), optic atrophy (1/5), ptosis (2/5), sensorineural hearing loss (2/4), microcephaly or relative microcephaly (5/5), and shared mild facial dysmorphisms.
- Overexpression supports a DN mechanism
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4964 MTSS1L Elena Savva gene: MTSS1L was added
gene: MTSS1L was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: MTSS1L was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MTSS1L were set to PMID: 36067766
Phenotypes for gene: MTSS1L were set to Intellectual disability, MTSS2-related (MONDO#0001071)
Review for gene: MTSS1L was set to GREEN
Added comment: Alt gene name: MTSS2

Huang (2022): recurring de novo missense variant (p.R671W) causing syndromic intellectual disability in 5 unrelated individuals.
- Individuals present with GDD, mild ID (5/5), nystagmus (3/5), optic atrophy (1/5), ptosis (2/5), sensorineural hearing loss (2/4), microcephaly or relative microcephaly (5/5), and shared mild facial dysmorphisms.
- Overexpression supports a DN mechanism
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4962 RABGAP1 Zornitza Stark gene: RABGAP1 was added
gene: RABGAP1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: RABGAP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RABGAP1 were set to 36083289
Phenotypes for gene: RABGAP1 were set to Neurodevelopmental disorder, RABGAP1-related,MONDO:0700092
Review for gene: RABGAP1 was set to GREEN
Added comment: 5 individuals from three families reported with ID, microcephaly, SNHL and seizures. Mouse model recapitulated the phenotype.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4959 NSD2 Zornitza Stark edited their review of gene: NSD2: Added comment: PMID 36189577: two individuals reported with a GoF variant, p.Glu1099Lys, and a distinct phenotype: intellectual disability, coarse/ square facial gestalt, abnormalities of the hands, and organomegaly.; Changed publications: 30345613, 31171569, 36189577; Changed phenotypes: Rauch-Steindl syndrome, MIM# 619695, Microcephaly, intellectual disability, Neurodevelopmental disorder, NSD2-associated, GoF, MONDO:0700092
Intellectual disability syndromic and non-syndromic v0.4959 FOSL2 Krithika Murali gene: FOSL2 was added
gene: FOSL2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: FOSL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FOSL2 were set to 36197437
Phenotypes for gene: FOSL2 were set to Neurodevelopmental disorder, MONDO:0700092, FOSL2-related
Review for gene: FOSL2 was set to GREEN
Added comment: PMID 36197437 Cospain et al 2022 report 11 individuals from 10 families with heterozygous PTC variants in exon 4/4 of the FOSL2 gene. All variants were predicted to escape NMD resulting in a truncated protein, with the truncation occurring proximal to the C-terminal domain (supportive functional studies).

In 10/11 families the variant occurred de novo in a single affected proband. In one family with 2 affected siblings, the variant was present in the siblings but absent in the unaffected parent likely due to gonadal mosaicism.

Clinical features included:
- Cutis aplasia congenital of the scalp (10/11)
- Tooth enamel hypoplasia and discolouration (8/9)
- Multiple other ectodermal features also noted e.g. small brittle nails, hypotrichosis/hypertrichosis, lichen sclerosis
- 5 individuals had cataracts (mostly bilateral, congenital/early childhood onset)
- 6/9 IUGR
- 5/9 postnatal growth restriction
- 7/9 developmental delay/ID (mild to severe)
- 5/7 ADHD/ASD
- 2/9 seizures
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4939 PTPA Konstantinos Varvagiannis changed review comment from: Biallelic PTPA pathogenic variants lead to a form of ID with later-onset parkinsonism based on 4 individuals from 2 families in the literature. Affected individuals were homozygous for missense variants demonstrated to result to reduced mRNA and protein levels as well as PP2A complex activation. Drosophila studies support an age-dependent locomotor dysfunction. Variants in other PP2A-complex-related genes also lead to NDDs. Summary provided below.

There is currently no associated phenotype in OMIM, G2P, PanelApp Australia or SysID.

Consider inclusion in relevant panels (ID, Parkinsonism/movement disorders, etc) with amber rating pending further reports.

------

Fevga, Tesson et al (2022 - PMID: 36073231) describe the features of 4 individuals, from 2 unrelated families, with biallelic pathogenic PTPA variants.

These presented with normal or delayed early milestones, learning disability and ID (mild to moderate) followed by progressive signs of parkinsonism (at the age of 11 yrs in 2 sibs, 15 yrs in another individual). Motor symptoms were responsive to levodopa and later to deep brain stimulation.

Linkage analysis in one consanguineous family followed by exome revealed homozygosity for a missense PTPA variant (NM_178001:c.893T>G/p.Met298Arg). Exome sequencing in affected subjects from the 2nd family revealed homozygosity for a further missense variant (c.512C>A/p.Ala171Asp). There were no other candidate variants for the phenotype following parental / segregation studies.

Role of the gene:
As the authors discuss, PTPA (or PPP2R4) is ubiquitously expressed in all tissues incl. brain and encodes a phosphotyrosyl phosphatase activator of the dimeric form of protein phosphatase-2A (PP2A). PP2A in turn, is the major Ser/Thr phosphatase in brain targeting a large number of proteins involved in diverse functions. Activation of PP2A is dependent on its methylation, which is negatively regulated by the PP2A-specific methylesterase (PME-1). By binding to PME-1, PTPA counteracts the negative influence of the former on PP2A. Pathogenic variants in genes encoding subunits/regulators of the PP2A complex (e.g. PPP2R1A or PPP2CA) are associated with neurodevelopmental disorders.

Variant studies:
Upon overexpression of wt and both variants in a HEK-293 cell line the authors demonstrated that both variants resulted in significantly reduced mRNA and protein levels (which for Ala171Asp were attributed to increased proteasomal degradation). Both variants were shown to result in impaired PP2A complex activation compared to wt.

Drosophila / animal models:
Pan-neuronal RNAi-mediated knockdown of ptpa in Drosophila resulted in an age-dependent locomotor dysfunction, reversible with L-DOPA treatment.
Previous studies in mice suggest cognitive/electrophysiological impairments upon downregulation of PP2A activity in transgenic mice.
Sources: Literature; to: Biallelic PTPA pathogenic variants lead to a form of ID with later-onset parkinsonism based on 4 individuals from 2 families in the literature. Affected individuals were homozygous for missense variants demonstrated to result to reduced mRNA and protein levels as well as PP2A complex activation. Drosophila studies support an age-dependent locomotor dysfunction. Variants in other PP2A-complex-related genes also lead to NDDs. Summary provided below.

There is currently no associated phenotype in OMIM, G2P, PanelApp UK or SysID.

Consider inclusion in relevant panels (ID, Parkinsonism/movement disorders, etc) with amber rating pending further reports.

------

Fevga, Tesson et al (2022 - PMID: 36073231) describe the features of 4 individuals, from 2 unrelated families, with biallelic pathogenic PTPA variants.

These presented with normal or delayed early milestones, learning disability and ID (mild to moderate) followed by progressive signs of parkinsonism (at the age of 11 yrs in 2 sibs, 15 yrs in another individual). Motor symptoms were responsive to levodopa and later to deep brain stimulation.

Linkage analysis in one consanguineous family followed by exome revealed homozygosity for a missense PTPA variant (NM_178001:c.893T>G/p.Met298Arg). Exome sequencing in affected subjects from the 2nd family revealed homozygosity for a further missense variant (c.512C>A/p.Ala171Asp). There were no other candidate variants for the phenotype following parental / segregation studies.

Role of the gene:
As the authors discuss, PTPA (or PPP2R4) is ubiquitously expressed in all tissues incl. brain and encodes a phosphotyrosyl phosphatase activator of the dimeric form of protein phosphatase-2A (PP2A). PP2A in turn, is the major Ser/Thr phosphatase in brain targeting a large number of proteins involved in diverse functions. Activation of PP2A is dependent on its methylation, which is negatively regulated by the PP2A-specific methylesterase (PME-1). By binding to PME-1, PTPA counteracts the negative influence of the former on PP2A. Pathogenic variants in genes encoding subunits/regulators of the PP2A complex (e.g. PPP2R1A or PPP2CA) are associated with neurodevelopmental disorders.

Variant studies:
Upon overexpression of wt and both variants in a HEK-293 cell line the authors demonstrated that both variants resulted in significantly reduced mRNA and protein levels (which for Ala171Asp were attributed to increased proteasomal degradation). Both variants were shown to result in impaired PP2A complex activation compared to wt.

Drosophila / animal models:
Pan-neuronal RNAi-mediated knockdown of ptpa in Drosophila resulted in an age-dependent locomotor dysfunction, reversible with L-DOPA treatment.
Previous studies in mice suggest cognitive/electrophysiological impairments upon downregulation of PP2A activity in transgenic mice.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4939 PTPA Konstantinos Varvagiannis gene: PTPA was added
gene: PTPA was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PTPA was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PTPA were set to 36073231
Phenotypes for gene: PTPA were set to Intellectual disability; Parkinsonism
Penetrance for gene: PTPA were set to Complete
Review for gene: PTPA was set to AMBER
Added comment: Biallelic PTPA pathogenic variants lead to a form of ID with later-onset parkinsonism based on 4 individuals from 2 families in the literature. Affected individuals were homozygous for missense variants demonstrated to result to reduced mRNA and protein levels as well as PP2A complex activation. Drosophila studies support an age-dependent locomotor dysfunction. Variants in other PP2A-complex-related genes also lead to NDDs. Summary provided below.

There is currently no associated phenotype in OMIM, G2P, PanelApp Australia or SysID.

Consider inclusion in relevant panels (ID, Parkinsonism/movement disorders, etc) with amber rating pending further reports.

------

Fevga, Tesson et al (2022 - PMID: 36073231) describe the features of 4 individuals, from 2 unrelated families, with biallelic pathogenic PTPA variants.

These presented with normal or delayed early milestones, learning disability and ID (mild to moderate) followed by progressive signs of parkinsonism (at the age of 11 yrs in 2 sibs, 15 yrs in another individual). Motor symptoms were responsive to levodopa and later to deep brain stimulation.

Linkage analysis in one consanguineous family followed by exome revealed homozygosity for a missense PTPA variant (NM_178001:c.893T>G/p.Met298Arg). Exome sequencing in affected subjects from the 2nd family revealed homozygosity for a further missense variant (c.512C>A/p.Ala171Asp). There were no other candidate variants for the phenotype following parental / segregation studies.

Role of the gene:
As the authors discuss, PTPA (or PPP2R4) is ubiquitously expressed in all tissues incl. brain and encodes a phosphotyrosyl phosphatase activator of the dimeric form of protein phosphatase-2A (PP2A). PP2A in turn, is the major Ser/Thr phosphatase in brain targeting a large number of proteins involved in diverse functions. Activation of PP2A is dependent on its methylation, which is negatively regulated by the PP2A-specific methylesterase (PME-1). By binding to PME-1, PTPA counteracts the negative influence of the former on PP2A. Pathogenic variants in genes encoding subunits/regulators of the PP2A complex (e.g. PPP2R1A or PPP2CA) are associated with neurodevelopmental disorders.

Variant studies:
Upon overexpression of wt and both variants in a HEK-293 cell line the authors demonstrated that both variants resulted in significantly reduced mRNA and protein levels (which for Ala171Asp were attributed to increased proteasomal degradation). Both variants were shown to result in impaired PP2A complex activation compared to wt.

Drosophila / animal models:
Pan-neuronal RNAi-mediated knockdown of ptpa in Drosophila resulted in an age-dependent locomotor dysfunction, reversible with L-DOPA treatment.
Previous studies in mice suggest cognitive/electrophysiological impairments upon downregulation of PP2A activity in transgenic mice.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4928 UBAP2L Konstantinos Varvagiannis gene: UBAP2L was added
gene: UBAP2L was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: UBAP2L was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: UBAP2L were set to 35977029
Phenotypes for gene: UBAP2L were set to Delayed speech and language development; Motor delay; Intellectual disability; Autistic behavior; Seizures; Microcephaly; Abnormality of head or neck; Short stature; Abnormality of the skeletal system
Penetrance for gene: UBAP2L were set to unknown
Review for gene: UBAP2L was set to GREEN
Added comment: Based on Jia et al (2022 - PMID: 35977029) speech, motor delay as well as ID are observed in individuals harboring de novo pLoF variants in UBAP2L. The gene encodes a regulator of the stress granule (SG) assembly. Extensive evidence is provided on the effect of variants as well as the role of UBAP2L and other genes for components and/or regulation of SG in pathogenesis of NDDs. Among others a Ubap2l htz deletion mouse model (behavioral and cognitive impairment, abnormal cortical development due to impaired SG assembly, etc). Data from 26 previous studies, aggregating 40,853 probands with NDDs (mostly DD/ID, also ASD) suggest enrichment for DNMs in UBAP2L or other genes previously known and further shown to be important for SG formation (incl. G3BP1/G3BP2, CAPRIN1).

Details provided below.

Not associated with any phenotype in OMIM, G2P or SysNDD.

--------

Jia et al (2022 - PMID: 35977029) describe 12 affected individuals with heterozygous de novo pLoF variants in UBAP2L.

Phenotype: Features included hypotonia, speech (11/11) and motor delay (8/12), ID (8/10 with formal evaluation), variable behavioral concerns (ADHD 5/11, ASD in 4/10, etc). Seizures were reported in 7/12 with 3/10 having a formal diagnosis of epilepsy. Few had microcephaly (3/10). Facial dysmorphisms were common (9/9) and included abnormal palpebral fissures, deep prominent concha, high broad forehead, hypertelorism, thin upper lip and mild synophrys (each in 4 or less individuals). Short stature or skeletal alterations were described in some (4/10 each).

Role of the gene: UBAP2L encodes an essential regulator of stress granule assembly. Stress granules are membraneless cytoplasmic compartments in eukaryotic cells, induced upon a variety of stressors and playing a role in regulation of gene expression.

Variants identified : 9 nonsense/frameshift UBAP2L variants and 3 splicing ones were reported, in all cases as de novo events, upon trio/quad exome sequencing. All were absent from gnomAD. There were no other causative variants.

Variant effect/studies (NM_014847.4 / NP_055662.3) :
- Minigene assays revealed that the 3 splice variants all resulted in out-of-frame exon skipping.
- In patient fibroblasts one of these splice variants was demonstrated to result to reduced protein levels.
- 8 of the 9 nonsense/frameshift variants were predicted to result to NMD.
- 1 nonsense variant (c.88C>T/p.Q30*) was shown to result to decreased protein expression in patient fibroblasts, with detection of the protein using an antibody for the C terminus but not the N terminus. Protein N-terminal sequencing confirmed that the protein lacked the N terminus, with utilization of an alternative start site (11 codons downstream).
- Generation of HeLa UBAP2L KO cell lines resulted in significant reduction of SG numbers which was also the case for 4 variants studied, under stress conditions.
- The protein has a DUF domain (aa 495-526) known to mediate interaction of UBAP2L with G3BP1 (a stress granule marker) with deletions of this domain leading to shuttling of UBAP2L from the cytoplasm to the nucleus. Truncating variants upstream of the DUF domain were shown to result in nuclear localization.

Mouse model :
- The authors generated Ubap2l KO model with hmz deletion of Ubap2l resulting in a lethal phenotype (2.6% survived) and htz deletion leading to behavioral issues (low preference for social novelty, anxious-like behaviors) and cognitive impairment.
- Ubap2l haploinsufficiency resulted in abnormal cortical development and lamination with reduction of neural progenitor proliferation.
- Ubap2l deficiency was shown to impair SG assembly during cortical development both under physiological stress conditions or upon utilization of an oxidative stress inducer.

Additional evidence of UBAP2L and SG overall in pathogenesis of NDDs:
- Based on DNMs from 40,853 individuals with NDDs from 26 studies (9,228 with ASD, 31,625 with DD/ID) the authors demonstrate significant excess of DNM in 31 genes encoding SG components, regulators or both, the latter being the case for UBAP2L and 2 further genes (G3BP1 and G3BP2 - both with crucial roles in SG assembly).
- Excess dn splice-site (N=3) and missense (N=5) variants in G3BP1 were observed in the above cohort [c.95+1G>A, c.353+1G>T, c.539+1G>A / p.S208C, R320C, V366M].
- Excess dn missense (N=7) variants in G3BP2 were observed in the above cohort [p.R13W, D151N, E158K, L209P, E399D, K408E, R438C].
- Generation of G3BP1 or G3BP2 KO HeLa cell lines and immunofluorescence upon use of oxidative stress inducer revealed significant reduction of stress granules.
- Generation of HeLa cell lines for 5 G3BP1 mutants (R78C*, R132I*, S208C*, R320C*, V366M) and 7 G3BP2 mutants (p.R13W*, D151N*, E158K, L209P*, E399D, K408E, R438C) revealed that several (those in asterisk) resulted in significantly fewer SG formation under oxidative stress compared to WT while the subcellular distribution of the proteins under stress was identical to WT.
- Among the identified genes for SG enriched for DNMs, CAPRIN1 was implicated in previous publications as a NDD risk gene with 3 dn missense SNVs reported (p.I373K, p.Q446H, p.L484P). CAPRIN1 binding to G3BP1/2 has been shown to promote SG formation. Significant reduction of SG was observed in CAPRIN1 KO HeLa lines. p.I373K abolished interaction with G3BP1/2 and disrupted SG formation.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4925 PDZD8 Zornitza Stark gene: PDZD8 was added
gene: PDZD8 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PDZD8 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PDZD8 were set to 35227461
Phenotypes for gene: PDZD8 were set to Intellectual developmental disorder with autism and dysmorphic facies, MIM# 620021
Review for gene: PDZD8 was set to GREEN
Added comment: Four individuals from two unrelated families, Drosophila and mouse models support gene-disease association.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4915 TMEM147 Naomi Baker gene: TMEM147 was added
gene: TMEM147 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TMEM147 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMEM147 were set to PMID: 36044892
Phenotypes for gene: TMEM147 were set to Neurodevelopmental disorder (MONDO:0700092), TMEM147-related
Review for gene: TMEM147 was set to GREEN
Added comment: PMID: 36044892; Twelve different variants reported in 23 affected individuals from 15 unrelated families with biallelic variants. All individuals had global developmental delay and intellectual disability. Consistent facial dysmorphisms included coarse facies, prominent forehead, board depressed nasal root, tented mouth, long smooth philtrum, and low-set ears. In vitro studies of missense variants demonstrated accelerated protein degradation via the autophagy-lysosomal pathway, while analysis of primary fibroblasts and granulocytes provided functional evidence of ER and nuclear envelope dysfunction.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4915 TMEM163 Teresa Zhao gene: TMEM163 was added
gene: TMEM163 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TMEM163 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: TMEM163 were set to PMID: 35953447
Phenotypes for gene: TMEM163 were set to Hypomyelinating leukodystrophy
Review for gene: TMEM163 was set to GREEN
Added comment: Four unrelated families with a hypomyelinating leukodystrophy phenotype. Genomic testing identified three distinct heterozygous missense variants in TMEM163 with two unrelated individuals sharing the same de novo variant.

All have global developmental delay, three of them have seizures.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4912 NOTCH1 Chern Lim changed review comment from: PMID: 35947102:
- Seven unrelated patients with leukoencephalopathy and calcifications, germline heterozygous de novo gain-of-function variants in NOTCH1.
- Missense and small inframe insertion variants in the negative regulatory region.
Sources: Literature; to: PMID: 35947102:
- Seven unrelated patients with leukoencephalopathy and calcifications, germline heterozygous de novo gain-of-function variants in NOTCH1.
- Other clinical features include intellectual disability, spasticity and etc. Childhood onset in most individuals however 15y and 40y reported in two individuals.
- Missense and small inframe insertion variants in the negative regulatory region.
Intellectual disability syndromic and non-syndromic v0.4912 LGI3 Melanie Marty changed review comment from: Six individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3.
Lgi3-null mice showed reduced and mis-local-ized Kv1 channel complexes in myelinated peripheral axons.
Sources: Literature; to: Sixteen individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3.
Lgi3-null mice showed reduced and mis-local-ized Kv1 channel complexes in myelinated peripheral axons.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4912 LGI3 Melanie Marty gene: LGI3 was added
gene: LGI3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: LGI3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LGI3 were set to PMID: 35948005
Phenotypes for gene: LGI3 were set to Global developmental delay; Intellectual disability; Distal deformities; Diminished reflexes; Facial myokymia; Hyporeflexia/areflexi
Review for gene: LGI3 was set to GREEN
Added comment: Six individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3.
Lgi3-null mice showed reduced and mis-local-ized Kv1 channel complexes in myelinated peripheral axons.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4912 CAPRIN1 Paul De Fazio gene: CAPRIN1 was added
gene: CAPRIN1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CAPRIN1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: CAPRIN1 were set to 35979925
Phenotypes for gene: CAPRIN1 were set to Neurodevelopmental disorder, CAPRIN1-related MONDO:0700092
Review for gene: CAPRIN1 was set to GREEN
gene: CAPRIN1 was marked as current diagnostic
Added comment: 12 individuals reported with ID and language impairment. Other features included seizures (4 individuals), hands and feet malformations (5 individuals), breathing problems (6 individuals), ocular problems (4 individuals) and hearing problems (3 individuals).

All of the variants were nonsense (NMD-predicted) or splicing variants. 10 were de novo, 1 was inherited from an affected father. Functional studies supported pathogenicity.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4904 CCDC82 Chirag Patel gene: CCDC82 was added
gene: CCDC82 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CCDC82 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CCDC82 were set to PMID: 35373332, 35118659, 27457812
Phenotypes for gene: CCDC82 were set to Intellectual disability and spastic paraparesis, no OMIM #
Review for gene: CCDC82 was set to GREEN
Added comment: 4 consanguineous families with 9 affected individuals with developmental delay/intellectual disability, and 2 families had spasticity and 1 had epilepsy. WES identified 3 homozgyous truncating variants, segregating with disease and parents as carriers. No functional studies.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4895 ZMYND8 Konstantinos Varvagiannis gene: ZMYND8 was added
gene: ZMYND8 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ZMYND8 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: ZMYND8 were set to 35916866; 32530565
Phenotypes for gene: ZMYND8 were set to Delayed speech and language development; Motor delay; Intellectual disability; Abnormality of cardiovascular system morphology; Hearing abnormality; Abnormality of vision; Abnormality of the face; Seizures
Penetrance for gene: ZMYND8 were set to unknown
Review for gene: ZMYND8 was set to GREEN
Added comment: Dias et al (2022 - PMID: 35916866) describe the phenotype of 11 unrelated individuals with monoallelic de novo (or suspected de novo) missense (N=9) or truncating (N=2) ZMYND8 variants. One of these subjects was previously reported by Suzuki et al (2020 - PMID: 32530565).

Features included speech delay/language difficulties (9/11), motor delay (9/11), ID (in 10/11 - profound in 1, moderate in 2), CHD (7/11 - PDA, VSD, ASD, pulmonary stenosis, etc), hearing or vision impairment (7/11). Seizures were reported in few (in text 5/11, table 2/11). Variable non-familial facial features were present in (9/11).

As the authors discuss, ZMYND8 encodes a multidomain protein playing a role in transcription regulation, chromatin remodeling, regulation of super enhancers, DNA damage response/tumor suppression.

The protein is broadly expressed in brain and shows highest expression in early development.

Molecular modeling and/or a yeast two-hybrid system were suggestive of disrupted interaction of ZMYND8 with Drebrin (missense variants in PWWP domain) or GATAD2A (variants in MYND domain).

Neuronal Zmynd8 knockdown in Drosophila resulted in deficits in habituation learning.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4874 SMG9 Zornitza Stark edited their review of gene: SMG9: Added comment: PMID 35087184: 5 individuals from 3 unrelated Finnish families reported with same homozygous missense variant (founder effect) and predominantly neurological phenotype. Uncertain if this is a distinct disorder or part of a spectrum with the previously reported cases.; Changed publications: 27018474, 31390136, 35087184; Changed phenotypes: Heart and brain malformation syndrome, MIM# 616920, Neurodevelopmental disorder with intention tremor, pyramidal signs, dyspraxia, and ocular anomalies, MIM# 619995
Intellectual disability syndromic and non-syndromic v0.4867 WARS Anna Ritchie gene: WARS was added
gene: WARS was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: WARS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: WARS were set to PMID: 35815345; 35790048
Phenotypes for gene: WARS were set to Neurodevelopmental disorder (MONDO:0700092), WARS-related
Review for gene: WARS was set to GREEN
Added comment: At least seven affected individuals from four families with biallelic variants, showing varying
severities of developmental delay, intellectual disability and microcephaly. Hearing impairment and, as well as brain anomalies, skeletal system, movement/gait, and behaviour were variable features.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4865 DOHH Daniel Flanagan gene: DOHH was added
gene: DOHH was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: DOHH was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DOHH were set to PMID: 35858628
Phenotypes for gene: DOHH were set to Neurodevelopmental disorder, DOHH-related (MONDO#0700092)
Review for gene: DOHH was set to GREEN
Added comment: Bi-allelic missense and truncating DOHH variants segregating with disease in five affected individuals from four unrelated families. Clinical features were developmental delay and/or intellectual disability (5/5), microcephaly (5/5), visual impairment (nystagmus (3/5), strabismus (3/5), and cortical visual impairment (1/5)) and congenital heart malformations (3/5 individuals).
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.4854 KMT2B Zornitza Stark edited their review of gene: KMT2B: Added comment: Nine individuals reported in PMID 33150406 with heterozygous variants in this gene and intellectual disability, speech delay, microcephaly, growth delay, feeding problems, and dysmorphic features, including epicanthic folds, posteriorly rotated ears, syndactyly/clinodactyly of toes, and fifth finger clinodactyly, normal MRIs and NO dystonia.; Changed publications: 33150406; Changed phenotypes: Dystonia 28, childhood-onset 617284, MONDO:0015004, Intellectual developmental disorder, autosomal dominant 68, MIM# 619934
Intellectual disability syndromic and non-syndromic v0.4846 CHMP3 Chern Lim gene: CHMP3 was added
gene: CHMP3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CHMP3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CHMP3 were set to PMID: 35710109
Phenotypes for gene: CHMP3 were set to Hereditary spastic paraplegia (MONDO:0019064), CHMP3-related
Review for gene: CHMP3 was set to AMBER
gene: CHMP3 was marked as current diagnostic
Added comment: PMID: 35710109
- Single large family with consanguinity, homozygous missense variant in 5 affected individuals with intellectual and progressive motor disabilities, seizures and spastic quadriplegia.
- Functional studies showed reduced CHMP3 protein in patient's fibroblasts, lenti-rescue study showed improved cellular phenotypes associated with impaired autophagy.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4843 WNK3 Lucy Spencer gene: WNK3 was added
gene: WNK3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: WNK3 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: WNK3 were set to 35678782
Phenotypes for gene: WNK3 were set to Neurodevelopmental disorder, WNK3-related (MONDO#0700092)
Review for gene: WNK3 was set to GREEN
Added comment: 6 maternally inherited hemizygous variants, 3 missense, 2 canonical splice, and a nonsense. Seen in 14 individuals from 6 families, all 14 are male who inherited hemizygous variants from their unaffected heterozygous mothers. The variants cosegregated with disease in 3 families with multiple affected individuals. All 14 patients have ID, 11 have speech delay, 10 have facial abnormalities, 5 have seizures, 6 with microcephaly and 7 with anomalies in brain imaging.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4839 TAF8 Zornitza Stark changed review comment from: Further 7 individuals reported from 4 families, three of which were consanguineous.

Clinical features included severe psychomotor retardation with almost absent development, feeding problems, microcephaly, growth retardation, spasticity and epilepsy.

Five had the previously reported c.781-1G > A variant in homozygous state. This is likely to be a founder variant.

One family with different compound heterozygous variants.; to: Further 7 individuals reported from 4 families, three of which were consanguineous.

Clinical features included severe psychomotor retardation with almost absent development, feeding problems, microcephaly, growth retardation, spasticity and epilepsy.

Five had the previously reported c.781-1G > A variant in homozygous state. Unclear if this is a founder variant, families of different ethnicities.

One family with different compound heterozygous variants.
Intellectual disability syndromic and non-syndromic v0.4834 KCNK9 Zornitza Stark edited their review of gene: KCNK9: Added comment: Additional 47 individuals reported with 15 variants, including another hotspot at p.Arg131.; Changed publications: 28333430, 27151206, 24980697, 18678320, 35698242
Intellectual disability syndromic and non-syndromic v0.4831 GRIA1 Zornitza Stark changed review comment from: Single individual reported with bi-allelic LoF variant.; to: Single individual reported with bi-allelic LoF variant. RED/AMBER for bi-allelic variants.
Intellectual disability syndromic and non-syndromic v0.4829 GRIA1 Zornitza Stark edited their review of gene: GRIA1: Added comment: Single individual reported with bi-allelic LoF variant.; Changed publications: 35675825; Changed phenotypes: Intellectual developmental disorder, autosomal recessive 76, MIM# 619931
Intellectual disability syndromic and non-syndromic v0.4820 IREB2 Zornitza Stark edited their review of gene: IREB2: Added comment: Additional individual reported in PMID 35602653; Changed publications: 30915432, 31243445, 11175792, 35602653
Intellectual disability syndromic and non-syndromic v0.4818 PAN2 Naomi Baker gene: PAN2 was added
gene: PAN2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PAN2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PAN2 were set to PMID:35304602; 29620724
Phenotypes for gene: PAN2 were set to Syndromic disease MONDO:0002254
Review for gene: PAN2 was set to GREEN
Added comment: PMID:35304602 reports five individuals from 3 families with biallelic (homozygous) loss-of-function variants. Clinical presentation incudes mild-moderate intellectual disability, hypotonia, sensorineural hearing loss, EEG abnormalities, congenital heart defects (tetralogy of Fallot, septal defects, dilated aortic root), urinary tract malformations, ophthalmological anomalies, short stature with other skeletal anomalies, and craniofacial features including flat occiput, ptosis, long philtrum, and short neck.

PMID:29620724 reports one individual with biallelic (homozygous) loss-of-function variant who presented with global developmental delay, mild hypotonia, craniosynostosis, severe early-onset scoliosis, imperforate anus, and double urinary collecting system.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4814 PRPF8 Krithika Murali gene: PRPF8 was added
gene: PRPF8 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PRPF8 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PRPF8 were set to 35543142
Phenotypes for gene: PRPF8 were set to Intellectual disability; epilepsy; Retinitis pigmentosa 13 - MIM#600059
Review for gene: PRPF8 was set to GREEN
Added comment: PMID 35543142 O'Grady et al 2022 report 14 unrelated individuals with heterozygous PRPF8 variants and ID, dymorphic features and epilepsy (7/14). Short stature, abnormal gait and cardiac anomalies also reported. 11 variants identified were de novo, 1 variant - maternal mosaicism, 1 variant - duo sequencing (not identified in mother, father could not be sequenced). 1 individual did not have parental testing. Cardiac anomalies varied and included benign cardiac tumour, dilated cardiomyopathy, dilated aortic root (COL5A2 VUS also identified), bicuspid aortic valve, cardiac arrest, self-resolving ASD/VSD.

Heterozygous PRPF8 variants previously associated with retinitis pigmentosa. 1 out of the 14 individuals in this cohort had a diagnosis of RP. RP variants noted to cluster in the C'terminal MPN domain. The individual with RP in this paper had a variant in the preceding RNAase H homology domain near the C-terminus. Not all of the individuals in this paper had formal ophthalmological examination
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4814 SEMA6B Dean Phelan gene: SEMA6B was added
gene: SEMA6B was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SEMA6B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SEMA6B were set to PMID: 35604360
Phenotypes for gene: SEMA6B were set to Intellectual disability, MONDO:0001071, SEMA6B related
Penetrance for gene: SEMA6B were set to Complete
Review for gene: SEMA6B was set to GREEN
Added comment: PMID: 35604360
- 14 heterozygous variants were observed in 16 unrelated individuals referred for intellectual disability. Majority of the variants 9/14 were PTCs in the last exon and predicted to escape NMD. Functional studies of selected variants and shRNA knock down studies showed mislocalisation and abnormal protein function.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4813 HEATR3 Chern Lim gene: HEATR3 was added
gene: HEATR3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: HEATR3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HEATR3 were set to PMID: 35213692
Phenotypes for gene: HEATR3 were set to Bone marrow failure, short stature, facial and acromelic dysmorphic features, and mild intellectual disability; Diamond Blackfan anaemia MONDO:0015253, HEATR3 related
Review for gene: HEATR3 was set to AMBER
gene: HEATR3 was marked as current diagnostic
Added comment: PMID: 35213692:
- 4 unrelated individuals with biallelic HEATR3 variants (missense and splice site variants), exhibiting bone marrow failure, short stature, facial and acromelic dysmorphic features, and mild intellectual disability.
- Functional analysis showed HEATR3 variants destabilised the protein, resulting in a reduction of nuclear uL18 and impaired ribosome biogenesis.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4790 GFM2 Chirag Patel gene: GFM2 was added
gene: GFM2 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: GFM2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GFM2 were set to PMID: 22700954, 26016410, 29075935
Phenotypes for gene: GFM2 were set to Combined oxidative phosphorylation deficiency 39, OMIM #618397
Review for gene: GFM2 was set to GREEN
Added comment: Combined oxidative phosphorylation deficiency-39 (COXPD39) is an autosomal recessive multisystem disorder resulting from a defect in mitochondrial energy metabolism. Affected individuals show global developmental delay, sometimes with regression after normal early development, axial hypotonia with limb spasticity or abnormal involuntary movements, and impaired intellectual development with poor speech. More variable features may include hypotonia, seizures, and features of Leigh syndrome on brain imaging. There are variable deficiencies of the mitochondrial respiratory chain enzyme complexes in patient tissues.

4 families reported with biallelic variants with functional evidence in 1 family.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.4776 ADD1 Chirag Patel gene: ADD1 was added
gene: ADD1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ADD1 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Publications for gene: ADD1 were set to PMID: 34906466
Phenotypes for gene: ADD1 were set to Intellectual disability, corpus callosum dysgenesis, and ventriculomegaly; no OMIM #
Review for gene: ADD1 was set to GREEN
Added comment: 4 unrelated individuals affected by ID and/or complete or partial agenesis of corpus callosum, and enlarged lateral ventricles. WES found loss-of-function variants - 1 recessive missense variant and 3 de novo variants. The recessive variant is associated with ACC and enlarged lateral ventricles, and the de novo variants were associated with complete or partial agenesis of corpus callosum, mild ID and attention deficit. Human variants impair ADD1 protein expression and/or dimerization with ADD2. Add1 knockout mice recapitulate corpus callosum dysgenesis and ventriculomegaly phenotypes. Three adducin genes (ADD1, ADD2, and ADD3) encode cytoskeleton proteins that are critical for osmotic rigidity and cell shape. ADD1, ADD2, and ADD3 form heterodimers (ADD1/ADD2, ADD1/ADD3), which further form heterotetramers. Adducins interconnect spectrin and actin filaments to form polygonal scaffolds beneath the cell membranes and form ring-like structures in neuronal axons. Adducins regulate mouse neural development, but their function in the human brain is unknown.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4741 CTR9 Dean Phelan gene: CTR9 was added
gene: CTR9 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CTR9 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CTR9 were set to PMID: 35499524
Phenotypes for gene: CTR9 were set to Neurodevelopmental disorder (MONDO:0700092), CTR9-related; Intellectual disability (MONDO:0001071); hypotonia (HP:0001252); joint hyperlaxity (HP:0001388); speech delay; coordination problems; tremor (HP:0001337); autism spectrum disorder (MONDO:0005258)
Review for gene: CTR9 was set to GREEN
Added comment: PMID: 35499524 - Thirteen individuals with variables degrees of intellectual disability, hypotonia, joint hyperlaxity, speech delay, coordination problems, tremor, autism spectrum disorder. Mild dysmorphism and cardiac anomalies were less frequent. Eleven of the variants were shown to be de novo.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4740 DROSHA Lucy Spencer gene: DROSHA was added
gene: DROSHA was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: DROSHA was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: DROSHA were set to 35405010
Phenotypes for gene: DROSHA were set to Neurodevelopmental disorder (MONDO#0700092), DROSHA-related
Review for gene: DROSHA was set to AMBER
Added comment: 2 individuals with profound intellectual disability, epilepsy, white matter atrophy, microcephaly, and dysmorphic features, who carry damaging de novo heterozygous variants in DROSHA. Both variants are missense, absent from gnomad. Both individuals noted to have Rett-like features.

Functional studies in patient fibroblasts showed one of the missense altered the expression of mature miRNA. Fruit fly models with homozygous LOF variants die during larval stages. introduction of the missense seen in the patients was able to partially rescue this phenotype suggesting LOF is not the mechanism.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4736 KCNH5 Elena Savva gene: KCNH5 was added
gene: KCNH5 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: KCNH5 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: KCNH5 were set to https://www.medrxiv.org/content/10.1101/2022.04.26.22274147v1
Phenotypes for gene: KCNH5 were set to Neurodevelopmental disorder MONDO#0700092, KCNH5-related
Mode of pathogenicity for gene: KCNH5 was set to Other
Review for gene: KCNH5 was set to GREEN
Added comment: Happ (2022), preprint: Screen of 893 patients with DEE found 17 patients with missense variants (16/17 de novo, 1/17 inherited). GOF mechanism suggested.
Patient phenotypes included focal/generalized seizures, Cognitive outcome for the ten individuals >5 years ranged from normal (3/10) to mild (3/10), moderate (2/10), severe (1/10) and profound (1/10) intellectual disability (ID)

p.Arg327His (7 probands), p.Arg333His (4 probands) were recurring
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4733 STX1A Ain Roesley gene: STX1A was added
gene: STX1A was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: STX1A was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Phenotypes for gene: STX1A were set to neurodevelopmental disorder MONDO#0700092, STX1A-related
Review for gene: STX1A was set to GREEN
gene: STX1A was marked as current diagnostic
Added comment: Preprint: https://www.medrxiv.org/content/10.1101/2022.04.20.22274073v1
8 individuals - 2x hom (related) and 6x hets (all de novo except 1x unknown)

7 unrelated since the 2 siblings share similar features:
7/7 ID, 7/7 motor delay, 4/7 epilepsy, 5/7 neonatal hypotonia 2/7 regression, 2/7 ASD excluding 1 with features but did not meet criteria
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4732 PPFIBP1 Zornitza Stark gene: PPFIBP1 was added
gene: PPFIBP1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert Review
Mode of inheritance for gene: PPFIBP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PPFIBP1 were set to https://www.medrxiv.org/content/10.1101/2022.04.04.22273309v1
Phenotypes for gene: PPFIBP1 were set to Neurodevelopmental disorder, MONDO:0700092, PPFIBP1-related
Review for gene: PPFIBP1 was set to GREEN
Added comment: 16 individuals from 10 unrelated families reported with moderate to profound developmental delay, often refractory early-onset epilepsy and progressive microcephaly. Drosophila model.
Sources: Expert Review
Intellectual disability syndromic and non-syndromic v0.4706 ENTPD1 Zornitza Stark gene: ENTPD1 was added
gene: ENTPD1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ENTPD1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ENTPD1 were set to 35471564
Phenotypes for gene: ENTPD1 were set to Spastic paraplegia 64, autosomal recessive, MIM# 615683
Review for gene: ENTPD1 was set to GREEN
Added comment: 27 individuals from 17 families published, expanding the phenotype to a complex neurodevelopmental disorder characterised by ID, white matter abnormalities and spastic paraplegia.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4662 PIGA Zornitza Stark edited their review of gene: PIGA: Added comment: PMID 34875027: variants in PIGA causing a neurodevelopment disorder and a juvenile form of hereditary hemochromatosis reported in > three unrelated patients. All patients had increased serum iron, ferritin and transferrin saturation levels, high ALP and low hepcidin. All patients had generalised seizures and intellectual disability. A subpopulation of patient blood cells showed a slight reduction of GPI-anchored proteins, suggesting that the mutations were hypomorphic and retained some residual activity. CRISPR/Cas12a-mediated knockdown of PIGA in Hep3B liver cells eliminated the cell surface expression of GPI-anchored proteins CD59 and hemojuvelin (HJV; 608374), as well as caused decreased expression of hepcidin (606464) compared to controls. These hypomorphic alleles could explain the milder neurologic phenotype, which allowed for sufficiently long survival for the iron overload phenotype to manifest.; Changed publications: 22305531, 24357517, 24706016, 26545172, 33333793, 32694024, 34875027; Changed phenotypes: Multiple congenital anomalies-hypotonia-seizures syndrome 2, MIM# 300868, MONDO:0010466, Neurodevelopmental disorder with epilepsy and haemochromatosis, MIM# 301072
Intellectual disability syndromic and non-syndromic v0.4658 CACNA2D1 Michelle Torres gene: CACNA2D1 was added
gene: CACNA2D1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CACNA2D1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CACNA2D1 were set to 35293990
Phenotypes for gene: CACNA2D1 were set to developmental and epileptic encephalopathy disorder MONDO:0100062 CACNA2D1-related
Review for gene: CACNA2D1 was set to GREEN
Added comment: PMID 35293990: WES of 2x unrelated individuals with early-onset developmental epileptic encephalopathy, microcephaly, severe hypotonia, absent speech, spasticity, choreiform movements, orofacial dyskinesia, and 2 cortical visual impairment, corpus callosum hypoplasia and progressive volume loss. Patient 2 also had a tiny patent foramen ovale.

Patient 1 is homozygous for p.(Ser275Asnfs*13). mRNA and protein expression were reduced to ~10% of WT in fibroblasts

Patient 2 is cHet for p.(Leu9Alafs*5) and p.(Gly209Asp). mRNA expression in patients fibroblasts was similar to controls, and protein expression reduced to 31-38%. Functional of the p.(Gly209Asp) showed impaired localization and mutagenesis showed complete loss of channel function.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4658 ATP2B1 Daniel Flanagan changed review comment from: 12 unrelated individuals with variants in ATP2B1 and an overlapping phenotype of mild to moderate global development delay. Additional common symptoms include autism (5), seizures (6), and distal limb abnormalities (4). 9 variants proven to be de novo, other 3 variants had unknown inheritance. 9 missense and 3 nonsense. Supporting functional analysis for missense.
Sources: Expert list; to: 12 unrelated individuals with variants in ATP2B1 and an overlapping phenotype of mild to moderate global development delay. Additional common symptoms include autism (5), dissimilar forms of seizures (6), and distal limb abnormalities (4). 9 variants proven to be de novo, other 3 variants had unknown inheritance. 9 missense and 3 nonsense. Supporting functional analysis for missense.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.4658 TRAPPC10 Naomi Baker gene: TRAPPC10 was added
gene: TRAPPC10 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TRAPPC10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TRAPPC10 were set to PMID: 35298461; 30167849
Phenotypes for gene: TRAPPC10 were set to neurodevelopmental disorder (MONDO:0700092), TRAPPC10-related
Review for gene: TRAPPC10 was set to GREEN
Added comment: PMID: 35298461 – two Pakistani families reported with homozygous variants. Family 1 has frameshift variant in 8 affected individual and family 2 has missense variant in 2 affected individuals. Patients present with microcephaly, short stature, hypotonia, severe ID and behavioural abnormalities. Seizures also reported in 4/10 individuals. Paper also reported brain abnormalities in null mouse model and other functional in transfected cell lines.

PMID: 30167849 – initial report of family 2 above.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4658 ATP2B1 Daniel Flanagan gene: ATP2B1 was added
gene: ATP2B1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: ATP2B1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ATP2B1 were set to PMID: 35358416
Phenotypes for gene: ATP2B1 were set to Neurodevelopmental disorder, MONDO:0700092, ATP2B1-related
Review for gene: ATP2B1 was set to GREEN
Added comment: 12 unrelated individuals with variants in ATP2B1 and an overlapping phenotype of mild to moderate global development delay. Additional common symptoms include autism (5), seizures (6), and distal limb abnormalities (4). 9 variants proven to be de novo, other 3 variants had unknown inheritance. 9 missense and 3 nonsense. Supporting functional analysis for missense.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.4642 RBMX Zornitza Stark gene: RBMX was added
gene: RBMX was added to Intellectual disability syndromic and non-syndromic. Sources: Expert Review
Mode of inheritance for gene: RBMX was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: RBMX were set to 25256757; 34260915
Phenotypes for gene: RBMX were set to Intellectual developmental disorder, syndromic 11, Shashi type, MIM#300238
Review for gene: RBMX was set to AMBER
Added comment: Hemizygous truncating variant reported segregating in multiple affected individuals in a single family. Some supportive functional data.
Sources: Expert Review
Intellectual disability syndromic and non-syndromic v0.4571 ITCH Zornitza Stark edited their review of gene: ITCH: Added comment: Unrelated individual reported in PMID 31091003 had normal intellect.; Changed publications: 20170897, 31091003
Intellectual disability syndromic and non-syndromic v0.4546 NAT8L Krithika Murali gene: NAT8L was added
gene: NAT8L was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: NAT8L was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NAT8L were set to 11310630; 19807691; 32275776
Phenotypes for gene: NAT8L were set to ?N-acetylaspartate deficiency - MIM#614063
Review for gene: NAT8L was set to AMBER
Added comment: Absence of brain N-acetylaspartate, has been described in only one patient, with truncal ataxia, marked developmental delay, seizures and secondary microcephaly (first described by - PMID: 11310630 Martin et al 2001). PMID: 19807691 - Wiame et al 2009 identified in this patient a homozygous 19 bp NAT8L gene deletion, resulting in a change in reading frame and the absence of production of a functional protein. The affected individual is adopted and testing of the biological parents was not possible. The authors provide supportive functional studies.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4524 HIST1H4D Paul De Fazio changed review comment from: Single individual described with a de novo missense variant Arg41His (Arg40 in H4 nomenclature). Apart from langauge delay and moderate ID, phenotypes included facial dysmorphisms and cochlear abnormalities and arhinencephaly on MRI. Hearing was normal. Birth length, OFC, weight were all reduced (-2 to -2.5SD).
A zebrafish model has developmental defects.
Sources: Literature; to: HGNC recognised gene name: H4C4
Single individual described with a de novo missense variant Arg41His (Arg40 in H4 nomenclature). Apart from langauge delay and moderate ID, phenotypes included facial dysmorphisms and cochlear abnormalities and arhinencephaly on MRI. Hearing was normal. Birth length, OFC, weight were all reduced (-2 to -2.5SD).
A zebrafish model has developmental defects.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4519 HIST1H4E Paul De Fazio changed review comment from: 17 patients identified with de novo missense variants affecting Lys31, Pro32, Arg35, Leu37, Arg40 (recurrent), Arg45 (recurrent), Tyr98 (recurrent). All individuals had ID/dev delay. Additional phenotypes in some but not all individuals included epilepsy, hypotonia, facial dysmorphism. Most had reduced birth length, OFC, weight (-1 to -3SD).
A zebrafish model has developmental defects.
Sources: Literature; to: HGNC recognised gene: H4C5
17 patients identified with de novo missense variants affecting Lys31, Pro32, Arg35, Leu37, Arg40 (recurrent), Arg45 (recurrent), Tyr98 (recurrent). All individuals had ID/dev delay. Additional phenotypes in some but not all individuals included epilepsy, hypotonia, facial dysmorphism. Most had reduced birth length, OFC, weight (-1 to -3SD).
A zebrafish model has developmental defects.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4519 HIST1H4C Paul De Fazio changed review comment from: 6 additional individuals with ID and dev delay. All variants were de novo. Lys92 (Lys91 in H4 nomenclature) and Pro33 (Pro32) were the only variants identified. Additional phenotypes in some but not all patients included hypotonia, facial dysmorphisms, conductive hearing loss. Most had reduced birth length, OFC, weight (-1 to -2.5SD).
A zebrafish model has developmental defects.; to: HGNC recognised gene name: H4C3
6 additional individuals with ID and dev delay. All variants were de novo. Lys92 (Lys91 in H4 nomenclature) and Pro33 (Pro32) were the only variants identified. Additional phenotypes in some but not all patients included hypotonia, facial dysmorphisms, conductive hearing loss. Most had reduced birth length, OFC, weight (-1 to -2.5SD).
A zebrafish model has developmental defects.
Intellectual disability syndromic and non-syndromic v0.4519 HIST1H4E Paul De Fazio gene: HIST1H4E was added
gene: HIST1H4E was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: HIST1H4E was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: HIST1H4E were set to 35202563
Phenotypes for gene: HIST1H4E were set to Neurodevelopmental disorder, HIST1H4E-related MONDO:0700092
Review for gene: HIST1H4E was set to GREEN
gene: HIST1H4E was marked as current diagnostic
Added comment: 17 patients identified with de novo missense variants affecting Lys31, Pro32, Arg35, Leu37, Arg40 (recurrent), Arg45 (recurrent), Tyr98 (recurrent). All individuals had ID/dev delay. Additional phenotypes in some but not all individuals included epilepsy, hypotonia, facial dysmorphism. Most had reduced birth length, OFC, weight (-1 to -3SD).
A zebrafish model has developmental defects.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4519 NRCAM Ee Ming Wong gene: NRCAM was added
gene: NRCAM was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: NRCAM was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NRCAM were set to PMID: 35108495
Phenotypes for gene: NRCAM were set to neurodevelopmental disorder, MONDO:0700092
Penetrance for gene: NRCAM were set to unknown
Review for gene: NRCAM was set to GREEN
gene: NRCAM was marked as current diagnostic
Added comment: -Ten individuals from 8 families with developmental delay/intellectual disability, hypotonia, peripheral neuropathy, and/or spasticity
- Affected individuals are biallelic for missense and/or LoF variants which are mainly in the fibronectin type III (Fn-III) domain
- Zebrafish mutants lacking the third Fn-III domain displayed significantly altered swimming behavior compared to wild-type larvae (p < 0.03) and a trend toward increased amounts of alpha-tubulin fibers in the dorsal telencephalon, demonstrating an alteration in white matter tracts and projections
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4519 HIST1H4D Paul De Fazio gene: HIST1H4D was added
gene: HIST1H4D was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: HIST1H4D was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: HIST1H4D were set to 35202563
Phenotypes for gene: HIST1H4D were set to Neurodevelopmental disorder, HIST1H4D-related MONDO:0700092
Review for gene: HIST1H4D was set to AMBER
gene: HIST1H4D was marked as current diagnostic
Added comment: Single individual described with a de novo missense variant Arg41His (Arg40 in H4 nomenclature). Apart from langauge delay and moderate ID, phenotypes included facial dysmorphisms and cochlear abnormalities and arhinencephaly on MRI. Hearing was normal. Birth length, OFC, weight were all reduced (-2 to -2.5SD).
A zebrafish model has developmental defects.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4519 CRLS1 Michelle Torres gene: CRLS1 was added
gene: CRLS1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CRLS1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CRLS1 were set to 35147173
Phenotypes for gene: CRLS1 were set to Mitochondrial disease MONDO:0044970 CRLS1-related
Added comment: - Three families (4 individuals) with cardiolipin deficiency.
- Two families (one consanguineous with 2 affected siblings) with homozygous the p.(Ile109Asn) had infantile progressive encephalopathy, bull’s eye maculopathy, auditory neuropathy, diabetes insipidus, autonomic instability, cardiac defects and early death.
- The fourth individual cHet p.(Ala172Asp) and p.(Leu217Phe) presented with chronic encephalopathy with neurodevelopmental regression, congenital nystagmus with decreased vision, sensorineural hearing loss, failure to thrive and acquired microcephaly.
- Functional studies on patient cells showed increased levels of the substrate of CRLS1 and impaired mitochondrial morphology and biogenesis
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4519 ZBTB7A Daniel Flanagan gene: ZBTB7A was added
gene: ZBTB7A was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: ZBTB7A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ZBTB7A were set to 34515416; 31645653
Phenotypes for gene: ZBTB7A were set to Macrocephaly, neurodevelopmental delay, lymphoid hyperplasia, and persistent fetal hemoglobin (MIM#619769)
Review for gene: ZBTB7A was set to GREEN
Added comment: PMID: 34515416. Monoallelic ZBTB7A variants identified in 12 individuals from 11 families, with macrocephaly (11/12), some degree of ID (12/12), autistic features (7/12) and hypertrophy of pharyngeal lymphoid tissue (12/12). Variants included LoF variants and missense, 8 variants were de novo.

PMID: 31645653. De novo ZBTB7A missense identified in a boy with macrocephaly, intellectual disability, and sleep apnea.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.4511 TIAM1 Alison Yeung gene: TIAM1 was added
gene: TIAM1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TIAM1 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: TIAM1 were set to Neurodevelopmental disorder, TIAM1-related, MONDO:0700092
Review for gene: TIAM1 was set to GREEN
Added comment: Reported in 4 unrelated individuals. Phenotype of developmental delay/intellectual disability and seizures. Loss of ortholog in Drosophila reduces the survival rate, and the surviving adults exhibit climbing defects, are prone to severe seizures, and have a short lifespan. Functional studies in 3 variants from two probands showed loss of function.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4507 CHKA Konstantinos Varvagiannis gene: CHKA was added
gene: CHKA was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CHKA was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CHKA were set to 35202461
Phenotypes for gene: CHKA were set to Abnormal muscle tone; Global developmental delay; Intellectual disability; Seizures; Microcephaly; Abnormality of movement; Abnormality of nervous system morphology; Short stature
Penetrance for gene: CHKA were set to Complete
Review for gene: CHKA was set to GREEN
Added comment: Klöckner (2022 - PMID: 35202461) describe the phenotype of 6 individuals (from 5 unrelated families) harboring biallelic CHKA variants.

Shared features incl. abnormal muscle tone(6/6 - hypertonia or hypotonia, 3/6 each), DD/ID (6/6,severe in 4, severe/profound in 2), epilepsy (6/6 - onset: infancy - 3y2m | epileptic spasms or GS at onset), microcephaly (6/6), movement disorders (3/6 - incl. dyskinesia, rigidity, choreoatetotic movements). 2/5 individuals exhibited MRI abnormalities, notably hypomyelination. Short stature was observed in 4/6.

Eventual previous genetic testing was not discussed.

Exome sequencing (quattro ES for 2 sibs, trio ES for 1 individual, singleton for 3 probands) revealed biallelic CHKA variants in all affected individuals. Sanger sequencing was performed for confirmation and segregation studies.

Other variants (in suppl.) were not deemed to be causative for the neurodevelopmental phenotype.

3 different missense, 1 start-loss and 1 truncating variant were identified, namely (NM_0012772.2):
- c.421C>T/p.(Arg141Trp) [3 hmz subjects from 2 consanguineous families],
- c.580C>T/p.Pro194Ser [1 hmz individual born to consanguineous parents],
- c.2T>C/p.(Met1?) [1 hmz individual born to related parents],
- c.14dup/p.(Cys6Leufs*19) in trans with c.1021T>C/p.(Phe341Leu) in 1 individual.

CHKA encodes choline kinase alpha, an enzyme catalyzing the first step of phospholipid synthesis in the Kennedy pathway. The pathway is involved in de novo synthesis of glycerophospholipids, phosphatidylcholine and phosphatidylethanolamine being the most abundant in eukaryotic membranes.

CHKA with its paralog (CHKB) phosphorylates either choline or ethanolamine to phosphocholine or phosphoethanolamine respectively with conversion of ATP to ADP.

As the authors comment, biallelic pathogenic variants in CHKB cause a NDD with muscular dystrophy, hypotonia, ID, microcephaly and structural mitochondrial anomalies (MIM 602541). [Prominent mitochondrial patterning was observed in a single muscle biopsy available from an individual with biallelic CHKA variants].

Other disorders of the Kennedy pathway (due to biallelic PCYT2, SELENOI, PCYT1A variants) present with overlapping features incl. variable DD/ID (no-severe), microcephaly, seizures, visual impairment etc.

CHKA variants were either absent or observed once in gnomAD, affected highly conserved AAs with multiple in silico predictions in favor of a deleterious effect.

In silico modeling suggests structural effects for several of the missense variants (Arg141Trp, Pro194Ser presumably affect ADP binding, Phe341 lying close to the binding site of phosphocholine).

Each of the missense variants was expressed in yeast cells and W. Blot suggested expression at the expected molecular weight at comparative levels. The 3 aforementioned variants exhibited reduced catalytic activity (20%, 15%, 50% respectively).

NMD is thought to underly the deleterious effect of the frameshift one (not studied).

The start-loss variant is expected to result in significantly impaired expression and protein function as eventual utilization of the next possible start codon - occurring at position 123 - would remove 26% of the protein.

Chka(-/-) is embryonically lethal in mice, suggesting that complete loss is not compatible with life. Reduction of choline kinase activity by 30% in heterozygous mice did not appear to result in behavioral abnormalities although this was not studied in detail (PMID cited: 18029352). Finally, screening of 1566 mouse lines identified 198 genes whose disruption yields neuroanatomical phenotypes, Chka(+/-) mice being among these (PMID cited: 31371714).

There is no associated phenotype in OMIM, Gene2Phenotype or SysID.

Overall this gene can be considered for inclusion in the ID and epilepsy panes with green or amber rating (>3 individuals, >3 variants, variant studies, overlapping phenotype of disorders belonging to the same pathway, etc). Consider also inclusion in the microcephaly panel (where available this seemed to be of postnatal onset).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4495 THUMPD1 Chern Lim changed review comment from: Broly, M. et al. (2022), AJHG:
- 13 individuals from 8 families, loss of function variants (PTVs, one missense, one single AA del).
- Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism and ophthalmological abnormalities.
Sources: Other; to: Broly, M. et al. (2022), AJHG:
- 13 individuals from 8 families, biallelic loss of function variants (PTVs, one missense, one single AA del).
- Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism and ophthalmological abnormalities.
Sources: Other
Intellectual disability syndromic and non-syndromic v0.4495 THUMPD1 Chern Lim changed review comment from: Broly, M. et al. (2022) manuscript accepted in AJHG:
- 13 individuals from 8 families, loss of function variants (PTVs, one missense, one single AA del).
- Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism and ophthalmological abnormalities.
Sources: Other; to: Broly, M. et al. (2022), AJHG:
- 13 individuals from 8 families, loss of function variants (PTVs, one missense, one single AA del).
- Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism and ophthalmological abnormalities.
Sources: Other
Intellectual disability syndromic and non-syndromic v0.4495 THUMPD1 Chern Lim gene: THUMPD1 was added
gene: THUMPD1 was added to Intellectual disability syndromic and non-syndromic. Sources: Other
Mode of inheritance for gene: THUMPD1 was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: THUMPD1 were set to Syndromic form of intellectual disability associated with developmental delay, behavioral abnormalities, hearing loss and facial dysmorphism, AR
gene: THUMPD1 was marked as current diagnostic
Added comment: Broly, M. et al. (2022) manuscript accepted in AJHG:
- 13 individuals from 8 families, loss of function variants (PTVs, one missense, one single AA del).
- Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism and ophthalmological abnormalities.
Sources: Other
Intellectual disability syndromic and non-syndromic v0.4494 PAX5 Bryony Thompson gene: PAX5 was added
gene: PAX5 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PAX5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PAX5 were set to 35094443; 31452935; 28263302; 25418537; 8001127; 27626380
Phenotypes for gene: PAX5 were set to neurodevelopmental disorder MONDO:0700092
Review for gene: PAX5 was set to GREEN
Added comment: 5 individuals from 4 families with large deletions involving PAX5 and 11 individuals from 9 families with frameshift/stopgain/missense variants and neurodevelopmental phenotypes that included delayed developmental milestones (DD), intellectual disability (ID), and/or ASD. 6 of the variants are de novo. Null mouse have retarded growth and altered patterning of the posterior midbrain. Pax5+/− mice of both sexes are hyperactive and have abnormal auditory brainstem responses.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4485 BAP1 Anna Ritchie gene: BAP1 was added
gene: BAP1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: BAP1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: BAP1 were set to PMID: 35051358
Phenotypes for gene: BAP1 were set to syndromic intellectual disability MONDO:0000508
Penetrance for gene: BAP1 were set to unknown
Review for gene: BAP1 was set to GREEN
Added comment: 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic neurodevelopmental disorder. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. All affected individuals harboring a de novo BAP1 variant had DD or ID (11/11) characterized notably by speech (11/ 11) and motor delay (6/11). Most of them had hypotonia (7/11), seizures (6/11), and abnormal behavior (8/10), including autism spectrum disorder, attention deficit hyperactivity disorder, and hypersensitivity. Almost all individuals showed dysmorphic facial features (10/11), and more than half (6/11) had skeletal malformations (involving the hands [4/11], feet [3/11], or spine [2/11]). Most of the individuals had growth failure (9/11), including four individuals with a very short stature.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4484 SOD1 Naomi Baker gene: SOD1 was added
gene: SOD1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SOD1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SOD1 were set to PMID: 31314961; 31332433; 34788402
Phenotypes for gene: SOD1 were set to Spastic tetraplegia and axial hypotonia, progressive, MIM#618598
Review for gene: SOD1 was set to GREEN
Added comment: Phenotypes include one individual with axial hypotonia and loss of gross and fine motor function beginning at 6 months of age, after which severe, progressive spastic tetraparesis developed and Babinski’s sign was present in both feet. MRI of brain detected mild frontoparietal atrophy.

The second individual had severe and marked by progressive loss of motor abilities from 9 months of age, tetraspasticity with predominance in the lower extremities, mild cerebellar atrophy, and hyperekplexia-like symptoms. Dysmorphic features such as low set, posteriorly rotated ears, and overlapping toes

The third individual is an infant with severe global developmental delay, axial hypotonia and limb spasticity. No dysmorphic facial features were noted, but she had a high arched palate, bilateral 5th finger clinodactyly, partial toe syndactyly of the second and third toes, and a single hyperpigmented macule tongue fasciculations, axial hypotonia with limb spasticity (more pronounced in the lower limbs), ankle clonus, and brisk patellar deep tendon reflexes.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4484 ITSN1 Ee Ming Wong changed review comment from: -10 individuals from eight unrelated with neurodevelopmental disorder spectrum including ASD, ID, major behavioral difficulties and/or verbal impairment.
-variants included heterozygous premature truncating and missense variants
-Majority of variants were de novo; in two patients the reported variant was inherited from paucisymptomatic father
Sources: Literature; to: -10 individuals from eight unrelated families with neurodevelopmental disorder spectrum including ASD, ID, major behavioral difficulties and/or verbal impairment.
-variants included heterozygous premature truncating and missense variants
-Majority of variants were de novo; in two patients the reported variant was inherited from paucisymptomatic father
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4484 ITSN1 Ee Ming Wong gene: ITSN1 was added
gene: ITSN1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ITSN1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ITSN1 were set to PMID: 34707297
Phenotypes for gene: ITSN1 were set to neurodevelopmental disorder MONDO:0700092 ITSN1-related
Penetrance for gene: ITSN1 were set to unknown
gene: ITSN1 was marked as current diagnostic
Added comment: -10 individuals from eight unrelated with neurodevelopmental disorder spectrum including ASD, ID, major behavioral difficulties and/or verbal impairment.
-variants included heterozygous premature truncating and missense variants
-Majority of variants were de novo; in two patients the reported variant was inherited from paucisymptomatic father
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4482 MAN2C1 Michelle Torres gene: MAN2C1 was added
gene: MAN2C1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: MAN2C1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MAN2C1 were set to 35045343
Phenotypes for gene: MAN2C1 were set to neurodevelopmental disorder MONDO:0700092 MAN2C1-related
Review for gene: MAN2C1 was set to GREEN
Added comment: Six individuals from four different families, including two fetuses, exhibiting dysmorphic facial features, congenital anomalies such as tongue hamartoma, variable degrees of intellectual disability, and brain anomalies including polymicrogyria, interhemispheric cysts, hypothalamic hamartoma, callosal anomalies, and hypoplasia of brainstem and cerebellar vermis. Variants include PTC and missense.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4481 FRA10AC1 Zornitza Stark gene: FRA10AC1 was added
gene: FRA10AC1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: FRA10AC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FRA10AC1 were set to 34694367
Phenotypes for gene: FRA10AC1 were set to Neurodevelopmental disorder, MONDO:0700092, FRA10AC1-related
Review for gene: FRA10AC1 was set to GREEN
Added comment: PMID 34694367: 5 individuals from 3 unrelated families reported.

Variable ID, possibly related to variant type with LoF variants associated with more severe ID. All individuals had microcephaly, hypoplasia or agenesis of the corpus callosum, growth retardation, and craniofacial dysmorphism.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4465 CAMK2G Zornitza Stark gene: CAMK2G was added
gene: CAMK2G was added to Intellectual disability syndromic and non-syndromic. Sources: Expert Review
Mode of inheritance for gene: CAMK2G was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CAMK2G were set to 30184290
Phenotypes for gene: CAMK2G were set to Intellectual disability
Mode of pathogenicity for gene: CAMK2G was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: CAMK2G was set to AMBER
Added comment: Two unrelated individuals reported with de novo (p.Arg292Pro) variant. Functional data suggests GoF.
Sources: Expert Review
Intellectual disability syndromic and non-syndromic v0.4438 ANAPC7 Zornitza Stark gene: ANAPC7 was added
gene: ANAPC7 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ANAPC7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ANAPC7 were set to 34942119
Phenotypes for gene: ANAPC7 were set to Ferguson-Bonni neurodevelopmental syndrome, MIM# 619699
Review for gene: ANAPC7 was set to AMBER
Added comment: 11 individuals of Amish heritage reported homozygous for an intragenic deletion. Clinical features included ID, hypotonia, deafness in 5, relatively small head size (but microcephaly only in 1), and occasional congenital anomalies.

Supportive mouse model.

Amber rating in light of this being a founder variant.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4408 NAA20 Chirag Patel gene: NAA20 was added
gene: NAA20 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: NAA20 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NAA20 were set to PMID: 34230638
Phenotypes for gene: NAA20 were set to Autosomal recessive developmental delay, intellectual disability, and microcephaly
Added comment: 2 consanguineous families with 5 affected individuals with developmental delay, intellectual disability, and microcephaly (-2-4SD). Exome and genome sequencing identified 2 different homozygous variants in NAA20 gene (p.Met54Val and p.Ala80Val), and segregated with affected individuals. N-terminal acetyltransferases modify proteins by adding an acetyl moiety to the first amino acid and are vital for protein and cell function. The NatB complex acetylates 20% of the human proteome and is composed of the catalytic subunit NAA20 and the auxiliary subunit NAA25. Both NAA20-M54V and NAA20-A80V were impaired in their capacity to form a NatB complex with NAA25, and in vitro acetylation assays revealed reduced catalytic activities toward different NatB substrates.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4391 CSTF2 Zornitza Stark gene: CSTF2 was added
gene: CSTF2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CSTF2 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: CSTF2 were set to 32816001
Phenotypes for gene: CSTF2 were set to Intellectual disability
Review for gene: CSTF2 was set to AMBER
Added comment: Four individuals from a single family, spanning two generations, segregating a missense variant. Functional data, including a mouse model and a gene reporter assay.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4370 KCND2 Zornitza Stark gene: KCND2 was added
gene: KCND2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: KCND2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KCND2 were set to 24501278; 16934482; 29581270; 34245260
Phenotypes for gene: KCND2 were set to Neurodevelopmental disorder MONDO:0700092; global developmental delay, HP:0001263; seizure, HP:0001250
Review for gene: KCND2 was set to GREEN
Added comment: 6 new unrelated cases with developmental delay reported in PMID: 34245260 (Zhang et al 2021), 3 of whom had seizures. All had heterozygous missense variants of KCND2 in sites known to be critical for channel gating (E323K, P403A, two individuals, V404L, two individuals and V404M). Functional studies suggest that these missense changes cause both a partial loss-of-function (LOF) and gain-of-function (GOF). The V404 change appears to increase epileptic seizure susceptibility with the 3 patients with a V404 change showing this phenotype.

PMID:24501278 - Lee et al, 2014 - reports pair of monozygotic twin boys with infantile onset severe refractory epilepsy and autism. A de novo heterozygous missense variant was identified by WES - V404M.

PMID: 29581270 - Lin et al, 2018 - performed functional work that shows V404M enhances inactivation of channels that have not yet opened and dramatically impairs the inactivation of channels that have opened.

PMID:16934482 - Singh et al, 2006 - reports a patient with cognative impairment who also went on to have seizures starting from age 13 with a 5 bp deletion in KCND2 leading to premature stop codon. The proband's asymptomatic father also shared this variant.
Sources: Literature
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4358 ADCY5 Zornitza Stark edited their review of gene: ADCY5: Added comment: Neurodevelopmental disorder with hyperkinetic movements and dyskinesia (NEDHYD) is an autosomal recessive complex neurologic disorder characterized by severe global developmental delay with axial hypotonia, impaired intellectual development, poor overall growth, and abnormal involuntary hyperkinetic movements, including dystonia, myoclonus, spasticity, and orofacial dyskinesia. It is the most severe manifestation of ADCY5-related dyskinetic disorders. Five individuals from 2 families reported.; Changed rating: AMBER; Changed publications: 22782511, 24700542, 33051786, 32647899, 33704598, 34631954, 28971144, 30975617; Changed phenotypes: Neurodevelopmental disorder with hyperkinetic movements and dyskinesia (NEDHYD), MIM#619651; Changed mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.4351 ASXL2 Zornitza Stark commented on gene: ASXL2: Shashi-Pena syndrome is a neurodevelopmental syndrome characterized by delayed psychomotor development, variable intellectual disability, hypotonia, facial dysmorphism, and some unusual features, including enlarged head circumference, glabellar nevus flammeus, and deep palmar creases. Some patients may also have atrial septal defect, episodic hypoglycaemia, changes in bone mineral density, and/or seizures.

At least 7 unrelated individuals reported.
Intellectual disability syndromic and non-syndromic v0.4347 BLOC1S1 Zornitza Stark gene: BLOC1S1 was added
gene: BLOC1S1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: BLOC1S1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: BLOC1S1 were set to 33875846
Phenotypes for gene: BLOC1S1 were set to severe intellectual disability; severe global developmental delay; epilepsy
Review for gene: BLOC1S1 was set to GREEN
Added comment: 4 individuals reported.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4345 CLCN7 Zornitza Stark gene: CLCN7 was added
gene: CLCN7 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CLCN7 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CLCN7 were set to 31155284
Phenotypes for gene: CLCN7 were set to Hypopigmentation, organomegaly, and delayed myelination and development, MIM# 618541
Mode of pathogenicity for gene: CLCN7 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: CLCN7 was set to AMBER
Added comment: Two individuals reported with same missense variant and hypopigmentation, organomegaly, and delayed myelination and development. Variant is GoF. No osteopetrosis, biopsy findings from skin and other organs are consistent with a lysosomal storage disorder. IUGR, prematurity and polyhydramnios are features. Bi-allelic variants in this gene are associated with osteopetrosis.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4342 TAF4 Zornitza Stark gene: TAF4 was added
gene: TAF4 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TAF4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TAF4 were set to 33875846; 28191890
Phenotypes for gene: TAF4 were set to Neurodevelopmental disorder
Review for gene: TAF4 was set to AMBER
Added comment: Three individuals reported with de novo LoF variants as part of large cohorts, limited phenotypic information available.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4338 PLK1 Zornitza Stark gene: PLK1 was added
gene: PLK1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PLK1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PLK1 were set to 33875846
Phenotypes for gene: PLK1 were set to Epilepsy; microcephaly; intellectual disability
Review for gene: PLK1 was set to GREEN
Added comment: More than 5 individuals reported.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4334 TMEM218 Zornitza Stark gene: TMEM218 was added
gene: TMEM218 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert Review
Mode of inheritance for gene: TMEM218 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMEM218 were set to 33791682; 25161209
Phenotypes for gene: TMEM218 were set to Joubert syndrome 39, MIM#619562
Review for gene: TMEM218 was set to GREEN
Added comment: 11 cases in 6 families with homozygous or compound heterozygous missense and nonsense (1) variants, with a Joubert/Meckel syndrome phenotype. Clinical features included the molar tooth sign (N=2), occipital encephalocele (N=5, all fetuses), retinal dystrophy (N=4, all living individuals), polycystic kidneys (N=2), and polydactyly (N=2), without liver involvement. A null mouse model had nephronophthisis and retinal degeneration. No OMIM entry.
Sources: Expert Review
Intellectual disability syndromic and non-syndromic v0.4322 OGDHL Melanie Marty edited their review of gene: OGDHL: Added comment: Nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing
loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum.

Homozygous and compound heterozygous variants reported. Variant types reported include missense, PTCs and a synonymous variant that was shown to affect splicing.

Functional studies with a CRISPR-Cas9-mediated tissue knockout with cDNA rescue system showed that the missense variants result in loss-of-function.; Changed rating: GREEN
Intellectual disability syndromic and non-syndromic v0.4322 OGDHL Melanie Marty commented on gene: OGDHL: Nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing
loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum.

Homozygous and compound heterozygous variants reported. Variant types reported include missense, PTCs and a synonymous variant that was shown to affect splicing.

Functional studies with a CRISPR-Cas9-mediated tissue knockout with cDNA rescue system showed that the missense variants result in loss-of-function.
Intellectual disability syndromic and non-syndromic v0.4322 OGDHL Melanie Marty changed review comment from: Nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing
loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum.

Homozygous and compound heterozygous variants reported. Variant types reported include missense, PTCs and a synonymous variant that was shown to affect splicing.

Functional studies with a CRISPR-Cas9-mediated tissue knockout with cDNA rescue system showed that the missense variants result in loss-of-function.
Sources: Literature; to: Nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing
loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum.

Homozygous and compound heterozygous variants reported. Variant types reported include missense, PTCs and a synonymous variant that was shown to affect splicing.

Functional studies with a CRISPR-Cas9-mediated tissue knockout with cDNA rescue system showed that the missense variants result in loss-of-function.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4322 OGDHL Melanie Marty gene: OGDHL was added
gene: OGDHL was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: OGDHL was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: OGDHL were set to PMID: 34800363
Phenotypes for gene: OGDHL were set to Neurodevelopmental disorder featuring epilepsy, hearing loss and visual impairment
Added comment: Nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing
loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum.

Homozygous and compound heterozygous variants reported. Variant types reported include missense, PTCs and a synonymous variant that was shown to affect splicing.

Functional studies with a CRISPR-Cas9-mediated tissue knockout with cDNA rescue system showed that the missense variants result in loss-of-function.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4255 MYH10 Krithika Murali gene: MYH10 was added
gene: MYH10 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list,Literature
Mode of inheritance for gene: MYH10 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MYH10 were set to 24825879; 24901346; 25356899; 22495309; 25003005
Phenotypes for gene: MYH10 were set to Microcephaly; Intellectual Disability
Review for gene: MYH10 was set to GREEN
Added comment: De novo variants were identified in 5 unrelated individuals with moderate-severe ID and developmental delay.

Other reported phenotypic features include microcephaly (4/5), IUGR/failure to thrive (4/5), cerebral atrophy (3/5), hydrocephalus (2/5), congenital bilateral hip dysplasia (2/5), cerebellar atrophy (1/5), congenital diaphragmatic hernia (1/5), cranial nerve palsy (1/5), nystagmus (1/5), dysplastic kidney (1/5).

Defects in heart development, body wall closure and other birth defects noted in mouse models.
Sources: Expert list, Literature
Intellectual disability syndromic and non-syndromic v0.4244 NUP85 Zornitza Stark gene: NUP85 was added
gene: NUP85 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: NUP85 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NUP85 were set to 34170319; 30179222
Phenotypes for gene: NUP85 were set to Intellectual disability
Review for gene: NUP85 was set to AMBER
Added comment: Bi-allelic variants in this gene are associated with nephrotic syndrome in 3 families.

Phenotype expansion:

PMID: 34170319 - Ravindran et al 2021 report two pedigrees with an MCPH-SCKS phenotype spectrum without SRNS. In the first family, a 9 yo female, with consanguineous parents, is reported to have a missense variant in NUP85 (c.932G > A; p.R311Q). Intrauterine growth restriction was noticed. At birth microcephaly was observed (OFC < 3rd centile, < −3.6 SD) as well as hypotrophy [weight −2.8 SD), length 45 cm (−2.7 SD), both <3rd centile], facial dysmorphism, syndactyly, long and thin fingers, and bilateral pes adductus. She has severe developmental delay with strongly delayed motor milestones and absent speech. Drug-resistant, genetic epilepsy with focal-onset seizures started in the first year of life. She had no clinical, laboratory or radiological findings indicative of kidney dysfunction. In the second family, compound heterozygous missense variants in NUP85 were detected (c.1109A > G, c.1589 T > C;p.N370S, p.M530T ) in a fetus. MRI of the fetal brain at 24 + 2 GW indicated complete agenesis of the corpus callosum, abnormal sulcation in the left frontal lobe, nodularity of the frontal horn and trigone with focal puckering of the left lateral ventricle.

PMID: 30179222 - Braun et al 2018 - 2 individuals from 1 of the families reported with steroid-resistant nephrotic syndrome were also reported to have intellectual disability but showed no structural brain defects. The degree of intellectual disability is not stated. They were found to have 2 compound heterozygous alleles (c.405+1G>A and c.1741G>C, p.Ala581Pro) in NUP85.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4233 SPRED2 Dean Phelan gene: SPRED2 was added
gene: SPRED2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SPRED2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SPRED2 were set to PMID: 34626534
Phenotypes for gene: SPRED2 were set to developmental delay; intellectual disability; cardiac defects; short stature; skeletal anomalies; a typical facial gestalt
Review for gene: SPRED2 was set to GREEN
Added comment: PMID: 34626534
Homozygosity for three different variants c.187C>T (p.Arg63∗), c.299T>C (p.Leu100Pro), and c.1142_1143delTT (p.Leu381Hisfs∗95) were identified in four subjects from three families. All variants severely affected protein stability, causing accelerated degradation, and variably perturbed SPRED2 functional behaviour. The clinical phenotype of the four affected individuals included developmental delay, intellectual disability, cardiac defects, short stature, skeletal anomalies, and a typical facial gestalt as major features, without the occurrence of the distinctive skin signs characterizing Legius syndrome.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4233 SPATA5L1 Paul De Fazio changed review comment from: 47 individuals from 26 unrelated families from various ethnicities with biallelic variants reported. Phenotypes include ID, hearing impairment, movement disorder, abnormal MRI, hypotonia, visual impairment, epilepsy, and microcephaly.

In 25 patients for whom full phenotype datasets were available, all 25 had ID.
Sources: Literature; to: 47 individuals from 26 unrelated families from various ethnicities with biallelic variants reported. Phenotypes include ID, hearing impairment, movement disorder, abnormal MRI, hypotonia, visual impairment, epilepsy, and microcephaly.

~53% of patients had ID.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4233 SPATA5L1 Paul De Fazio gene: SPATA5L1 was added
gene: SPATA5L1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SPATA5L1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SPATA5L1 were set to 34626583
Phenotypes for gene: SPATA5L1 were set to Intellectual disability; spastic-dystonic cerebral palsy; epilepsy; hearing loss
Review for gene: SPATA5L1 was set to GREEN
gene: SPATA5L1 was marked as current diagnostic
Added comment: 47 individuals from 26 unrelated families from various ethnicities with biallelic variants reported. Phenotypes include ID, hearing impairment, movement disorder, abnormal MRI, hypotonia, visual impairment, epilepsy, and microcephaly.

In 25 patients for whom full phenotype datasets were available, all 25 had ID.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4214 ZNHIT3 Zornitza Stark gene: ZNHIT3 was added
gene: ZNHIT3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ZNHIT3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZNHIT3 were set to 28335020; 28335020; 31048081
Phenotypes for gene: ZNHIT3 were set to PEHO syndrome, MIM# 260565
Review for gene: ZNHIT3 was set to GREEN
Added comment: PEHO is a severe autosomal recessive neurodevelopmental disorder characterized by extreme cerebellar atrophy due to almost total loss of granule neurons. Affected individuals present in early infancy with hypotonia, profoundly delayed psychomotor development, optic atrophy, progressive atrophy of the cerebellum and brainstem, and dysmyelination. Most patients also develop infantile seizures that are often associated with hypsarrhythmia on EEG, and many have peripheral oedema. More than 20 affected individuals reported of Finnish origin, p.Ser31Leu is a founder variant. One compound het reported and supportive animal model.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4213 KIAA0556 Paul De Fazio gene: KIAA0556 was added
gene: KIAA0556 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: KIAA0556 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: KIAA0556 were set to 26714646; 27245168
Phenotypes for gene: KIAA0556 were set to Joubert syndrome 26, MIM# 616784
Review for gene: KIAA0556 was set to GREEN
gene: KIAA0556 was marked as current diagnostic
Added comment: 5 individuals from two families reported, supportive mouse model. Individuals were reported to have (global) developmental delay.

New HGNC approved name is KATNIP.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4207 NDUFA8 Krithika Murali gene: NDUFA8 was added
gene: NDUFA8 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: NDUFA8 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NDUFA8 were set to 32385911; 33153867
Phenotypes for gene: NDUFA8 were set to Mitochondrial complex I deficiency, nuclear type 37- 619272; Epilepsy; Microcephaly; Developmental Delay
Review for gene: NDUFA8 was set to AMBER
Added comment: 3 individuals from 2 unrelated families reported with phenotypic features including microcephaly (1/3), seizures (2/3), developmental delay (3/3) and MRI-B changes (3/3).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4203 NSRP1 Krithika Murali gene: NSRP1 was added
gene: NSRP1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: NSRP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NSRP1 were set to 34385670
Phenotypes for gene: NSRP1 were set to Epilepsy; Cerebral palsy; microcephaly; Intellectual disability
Review for gene: NSRP1 was set to AMBER
Added comment: Novel gene regulating splicing. Biallelic LoF pathogenic variants reported in 6 individuals from 3 unrelated families associated with a phenotype characterized by developmental delay, epilepsy, microcephaly, and spastic cerebral palsy.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4202 GABRD Zornitza Stark gene: GABRD was added
gene: GABRD was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: GABRD was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GABRD were set to 15115768; 34633442
Phenotypes for gene: GABRD were set to Intellectual disability; Epilepsy; Susceptibility to epilepsy, MIM#613060
Review for gene: GABRD was set to GREEN
Added comment: Susceptibility to epilepsy, MIM#613060: Limited reports. The variant originally reported in PMID 15115768 in association with epilepsy is present in >4,000 hets in gnomad and 55 homs which is not consistent with a Mendelian disorder.

PMID 34633442: 10 individuals with 7 unique variants reported in individuals with neurodevelopmental disorders and epilepsy. Six of the variants were demonstrated to be GoF, and those individuals with neurodevelopmental disorders with behavioural issues, various degrees of intellectual disability, generalized epilepsy with atypical absences and generalized myoclonic and/or bilateral tonic-clonic seizures. In contrast, the one individual carrying a loss-of-function variant had normal intelligence, no seizure history but has a diagnosis of autism spectrum disorder and suffering from elevated internalizing psychiatric symptoms.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4194 THG1L Krithika Murali gene: THG1L was added
gene: THG1L was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: THG1L was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: THG1L were set to 33682303
Phenotypes for gene: THG1L were set to Spinocerebellar ataxia, autosomal recessive 28 - 618800; Epilepsy; Intellectual Disability
Review for gene: THG1L was set to AMBER
Added comment: 3 individuals from 2 unrelated families of Ashkenazi Jewish descent with compound heterozygous variants ( p.Cys51Trp and p.Val55Ala) presented with profound developmental delays, microcephaly, intractable epilepsy, and cerebellar hypoplasia.

Homozygous variants associated with ataxia phenotype.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4179 BPTF Zornitza Stark commented on gene: BPTF: Over 30 unrelated individuals reported, mostly de novo, some inherited variants. Clinical features include intellectual disability, seizures, poor growth with small head size, dysmorphic facial features, and mild abnormalities of the hands and feet.
Intellectual disability syndromic and non-syndromic v0.4175 SNIP1 Zornitza Stark changed review comment from: Three Amish individuals with same homozygous variant, founder effect.; to: Four Amish individuals with same homozygous variant, founder effect.
Intellectual disability syndromic and non-syndromic v0.4163 ABHD16A Lucy Spencer gene: ABHD16A was added
gene: ABHD16A was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ABHD16A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ABHD16A were set to PMID: 34587489
Phenotypes for gene: ABHD16A were set to Spastic paraplegia
Added comment: 11 individuals from 6 families with a complicated form of hereditary spastic paraplegia who carry bi-allelic deleterious variants in ABHD16A. Affected individuals present with a similar phenotype consisting of global developmental delay/intellectual disability, progressive spasticity affecting the upper and lower limbs, and corpus callosum and white matter anomalies. Immunoblot analysis on extracts from fibroblasts from four affected individuals demonstrated little to no ABHD16A protein levels compared to controls.
In 5 of the families the affected members were homozygous, 3 of these families were consanguineous. 2 families have the same variant- both families are French-Canadian.
4 missense variants, 1 frameshift, 1 nonsense.
From PMID: 34587489
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4148 CPE Zornitza Stark edited their review of gene: CPE: Added comment: Bosch et al. 2021 (PMID: 34383079) reported on 4 individuals from 3 additional families harbouring 2 different homozygous truncating variants in this gene. Clinical presentation was prominent for obesity and intellectual disability. Hypogonadotropic hypogonadism was confirmed in one individual and was suspected but not tested for in another two subjects.; Changed rating: GREEN; Changed publications: 26120850, 32936766, 34383079; Changed phenotypes: Intellectual developmental disorder and hypogonadotropic hypogonadism, MIM# 619326
Intellectual disability syndromic and non-syndromic v0.4140 ATP6V0C Zornitza Stark gene: ATP6V0C was added
gene: ATP6V0C was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
SV/CNV tags were added to gene: ATP6V0C.
Mode of inheritance for gene: ATP6V0C was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ATP6V0C were set to 33190975; 33090716
Phenotypes for gene: ATP6V0C were set to Epilepsy; Intellectual Disability; microcephaly
Review for gene: ATP6V0C was set to AMBER
Added comment: 9 individuals reported with deletions and ID/seizures/microcephaly, minimum overlapping region implicates ATP6V0C as the causative gene. Single case report of de novo SNV and ID/seizures.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4138 ARFGEF1 Zornitza Stark gene: ARFGEF1 was added
gene: ARFGEF1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ARFGEF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ARFGEF1 were set to 34113008
Phenotypes for gene: ARFGEF1 were set to Intellectual disability; Epilepsy
Review for gene: ARFGEF1 was set to GREEN
Added comment: 13 individuals reported with variants in this gene and a neurodevelopmental disorder characterised by variable ID, seizures present in around half. Variants were inherited from mildly affected parents in 40% of families.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4104 UBE2U Ee Ming Wong gene: UBE2U was added
gene: UBE2U was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: UBE2U was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: UBE2U were set to PMID: 33776059
Phenotypes for gene: UBE2U were set to Retinoschisis; cataracts; learning disabilities; developmental delay
Penetrance for gene: UBE2U were set to Complete
Review for gene: UBE2U was set to RED
gene: UBE2U was marked as current diagnostic
Added comment: - one missense UBE2U variant identified in one family with five affected individuals (includes proband)
- in silico analyses predicts the UBE2U variant to be damaging
- no functional
- another STUM missense variant identified in the same family predicted to be benign
- additional clinical assessment indicated that the family shared some systemic dysmorphisms and learning disabilities similar to RIDDLE syndrome
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4102 COPB2 Belinda Chong gene: COPB2 was added
gene: COPB2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: COPB2 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: COPB2 were set to PMID: 34450031
Phenotypes for gene: COPB2 were set to Osteoporosis and developmental delay
Review for gene: COPB2 was set to AMBER
Added comment: Loss-of-function variants in COPB2 (MIM: 606990), a component of the COPI coatomer complex, in six individuals from five unrelated families presenting with a clinical spectrum of osteoporosis or os- teopenia, with or without fractures, and developmental delay of variable severity. A hypomorphic, homozygous missense variant in COPB2 was previously reported in two siblings with microcephaly, spasticity, and develop- mental delay (MIM: 617800) in whom we also here identified low bone mass. Data demonstrate that pathogenic variants in COPB2 lead to early onset osteoporosis and variable developmental delay and that COPB2 and the COPI complex are essential regulators of skeletal homeostasis

3 frameshift (2 de novo, 1 not maternal), 1 x splice (de novo), 2 missense (homozygous).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4102 CACNA1I Kristin Rigbye gene: CACNA1I was added
gene: CACNA1I was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CACNA1I was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CACNA1I were set to 33704440
Phenotypes for gene: CACNA1I were set to Neurodevelopmental disorder
Mode of pathogenicity for gene: CACNA1I was set to Other
Review for gene: CACNA1I was set to GREEN
Added comment: 4 different missense variants identified and shown to result in a gain of function.

2 individuals with de novo variants (a 3rd also suspected de novo but their father was unavailable for testing) - these patients all had severe neurodevelopmental disorders, involving severe global developmental delay, absence of speech, gross motor delay, muscular hypotonia, early-onset seizures, cortical visual impairment, and feeding difficulties. Variable clinical features include various brain malformations, startle response or seizures, postnatal growth retardation, gastroesophageal reflux, and gastrostomy.

1 family had three affected individuals - variable cognitive impairment in all, involving borderline intellectual functioning or mild or moderate intellectual disability as main clinical feature, with late-onset seizures in the mother and speech retardation in one of the children. This variant had a milder functional effect than the variants in sporadic cases.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4098 ZNF668 Paul De Fazio changed review comment from: 5 individuals from 3 consanguineous families reported with different biallelic truncating (not NMD) variants in ZNF668. Phenotypes included microcephaly, growth deficiency, severe global developmental delay, brain malformation, and distinct facial dysmorphism.

Immunofluorescence indicated ZNF668 deficiency. An increased DNA damage phenotype was demonstrated in patient fibroblasts.
Sources: Literature; to: 2 consanguineous families reported with different biallelic truncating (not NMD) variants in ZNF668. Phenotypes included microcephaly, growth deficiency, severe global developmental delay, brain malformation, and distinct facial dysmorphism.

Immunofluorescence indicated ZNF668 deficiency. An increased DNA damage phenotype was demonstrated in patient fibroblasts.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4098 ZNF668 Paul De Fazio gene: ZNF668 was added
gene: ZNF668 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ZNF668 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZNF668 were set to 34313816; 26633546
Phenotypes for gene: ZNF668 were set to DNA damage repair defect; microcephaly; growth deficiency; severe global developmental delay; brain malformation; facial dysmorphism
Review for gene: ZNF668 was set to GREEN
gene: ZNF668 was marked as current diagnostic
Added comment: 5 individuals from 3 consanguineous families reported with different biallelic truncating (not NMD) variants in ZNF668. Phenotypes included microcephaly, growth deficiency, severe global developmental delay, brain malformation, and distinct facial dysmorphism.

Immunofluorescence indicated ZNF668 deficiency. An increased DNA damage phenotype was demonstrated in patient fibroblasts.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4097 ARF1 Zornitza Stark gene: ARF1 was added
gene: ARF1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ARF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ARF1 were set to 28868155; 34353862
Phenotypes for gene: ARF1 were set to Periventricular nodular heterotopia 8, MIM# 618185
Review for gene: ARF1 was set to GREEN
Added comment: 5 individuals from 4 untreated families reported. 3/5 individuals presented with seizures and all had developmental delays, especially in speech (one patient had a diagnosis of moderate ID).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4070 ZNF699 Zornitza Stark gene: ZNF699 was added
gene: ZNF699 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ZNF699 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZNF699 were set to 33875846
Phenotypes for gene: ZNF699 were set to DEGCAGS syndrome, MIM# 619488
Review for gene: ZNF699 was set to GREEN
Added comment: DEGCAGS syndrome is a neurodevelopmental disorder characterized by global developmental delay, coarse and dysmorphic facial features, and poor growth and feeding apparent from infancy. Affected individuals have variable systemic manifestations often with significant structural defects of the cardiovascular, genitourinary, gastrointestinal, and/or skeletal systems. Additional features may include sensorineural hearing loss, hypotonia, anaemia or pancytopaenia, and immunodeficiency with recurrent infections.

12 unrelated families reported, 5 different homozygous frameshift variants.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4058 ARF3 Konstantinos Varvagiannis gene: ARF3 was added
gene: ARF3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ARF3 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: ARF3 were set to 34346499
Phenotypes for gene: ARF3 were set to Global developmental delay; Intellectual disability; Seizures; Morphological abnormality of the central nervous system
Penetrance for gene: ARF3 were set to unknown
Added comment: Sakamoto et al (2021 - PMID: 34346499) provide some evidence that monoallelic ARF3 pathogenic variants may be associated with a NDD with brain abnormality.

Using trio exome sequencing, the authors identified 2 individuals with NDD harboring de novo ARF3 variants, namely: NM_001659.2:c.200A>T / p.Asp67Val and c.296G>T / p.Arg99Leu.

Individual 1 (with Asp67Val / age : 4y10m), appeared to be more severelely affected with prenatal onset progressive microcephaly, severe global DD, epilepsy. Upon MRI there was cerebellar and brainstem atrophy. Individual 2 (Arg99Leu / 14y) had severe DD and ID (IQ of 23), epilepsy and upon MRI cerebellar hypoplasia. This subject did not exhibit microcephaly. Common facial features incl. broad nose, full cheeks, small philtrum, strabismus, thin upper lips and abnormal jaw. There was no evidence of systemic involvement in both.

ARF3 encodes ADP-ribosylation factor 3. Adenosine diphosphate ribosylation factors (ARFs) are key proteins for regulation of cargo sorting at the Golgi network, with ARF3 mainly working at the trans-Golgi network. ARFs belong to the small GTP-binding protein (G protein) superfamily. ARF3 switches between an active GTP-bound form and an inactive GDP-bound form, regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) respectively.

Members of the ARF superfamily regulate various aspects of membrane traffic, among others in neurons.

There are 5 homologs of ARF families, divided in 3 classes. ARF3 and ARF1 belong to class I. Monoallelic ARF1 mutations are associated with Periventricular nodular heterotopia 8 (MIM 618185).

In vivo, in vitro and in silico studies for the 2 variants suggest that both impair the Golgi transport system although each variant most likely exerts a different effect (gain-of-function for Arg99Leu vs loss-of-function/dominant-negative for Asp67Val).

This was also reflected in somewhat different phenotype of the subjects with the respective variants. Common features included severe DD, epilepsy and brain abnormalities although Asp67Val was associated with diffuse brain atrophy as well as congenital microcephaly and Arg99Leu with cerebellar hypoplasia.

Evidence to support the effect of each variant include:

Arg99Leu:
Had identical Golgi localization to that of wt
Had increased binding activity with GGA1, a protein recruited by the GTP-bound active form of ARF3 to the TGN membrane (supporting GoF)
In silico structural analysis suggested it may fail to stabilize the conformation of Asp26, resulting in impaired GTP hydrolysis (GoF).
In transgenic fruit flies, evaluation of the ARF3 variant toxicity using the rough eye phenotype this variant was associated with increased severity of the r-e phenotype similar to a previously studied GoF variant (Gln71Leu)

Asp67Val:
Did not show a Golgi-like pattern of localization (similar to Thr31Asn a previously studied dominant-negative variant)
Displayed decreased protein stability
In silico structural analysis suggested that Asp67Val may lead to compromised binding of GTP or GDP (suggestive of LoF)
In transgenic Drosophila eye-specific expression of Asp67Val (similar to Thr31Asn, a known dominant-negative variant) was lethal possibly due to high toxicity in very small amounts in tissues outside the eye.

There is no associated phenotype in OMIM, G2P or SysID.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4053 PLXNA2 Konstantinos Varvagiannis gene: PLXNA2 was added
gene: PLXNA2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature,Other
Mode of inheritance for gene: PLXNA2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PLXNA2 were set to 34327814
Phenotypes for gene: PLXNA2 were set to Intellectual disability; Abnormality of the face; Failure to thrive; Abnormal heart morphology
Penetrance for gene: PLXNA2 were set to Incomplete
Review for gene: PLXNA2 was set to AMBER
Added comment: Altuame et al (2021 - PMID: 34327814) describe 3 individuals from 2 consanguineous Arab families with biallelic PLXNA2 variants.

The index patient from the 1st family presented with CHD (hypoplastic right ventricle, ASD), DD and moderate ID (IQ of 40), failure to thrive as well as some dysmorphic features (obtuse mandibular angle, mild overbite, synophrys with downslanting p-f, strabismus, etc). There were additional features (eg. postaxial polydactyly) which were found in other affected and unaffected family members.

Exome sequencing with autozygome analysis revealed homozygosity for a PLXNA2 stopgain variant (NM_025179:c.3603C>A / p.(Cys1201*)).

Sanger confirmation was carried out and segregation analyses confirmed carrier status of the unaffected parents and a sib as well as a brother homozygous for the same variant. Clinical evaluation of the latter, following this finding revealed borderline intellectual functioning, ADHD, failure to thrive. There was no mandibular anomaly or overbite and no clinical evidence of CHD (no echo performed).

The index patient from the 2nd consanguineous family was evaluated for ID (IQ of 63), with previous borderline motor development, ADHD and some dysmorphic features (obtuse mandibular angle and overbite). There was no clinical evidence of CHD (no echo performed).

Exome sequencing with autozygosity mapping revealed a homozygous missense PLXNA2 variant (c.3073G>A / p.(Asp1025Asn), present only once in gnomAD (htz), with rather non-concordant in silico predictions SIFT 0.22, PolyPhen 0.682 and CADD 23.5. The aa was however highly conserved.

Segregation analysis confirmed carrier state of the parents and 2 unaffected sibs, with a 3rd sib homozygous for the wt allele.

As the authors discuss:
*PLXNA2 belongs to the plexin family of genes, encoding transmbembrane proteins functioning as semaphorin receptors. It has predominant expression in neural tissue. The protein is thought to bind semaphorin-3A, -3C or -5 followed by plexin A2 dimerization, activation of its GTPase-activating protein domain, negative regulation of Rap1B GTPase and initiation of a signal transduction cascade mediating axonal repulsion/guidance, dendritic guidance, neuronal migration.
*Murine Plxna2 knockout models display structural brain defects. In addition they display congenital heart defects incl. persistent truncus arteriosus and interrupted aortic arch.
*Rare CNVs in adult humans with tetralogy of Fallot have suggested a potential role of PLXNA2 in cardiac development and CHD.
*Expression and the role of PLXNA2 in human chondrocytes as well as a GWAS in 240 japanese patients with mandibular prognathism where PLXNA2 was suggested as a susceptibility locus.

Overall, the authors recognize some common features (as for cognitive functioning, some dysmorphic features incl. obtuse mandibular angle and overbite in 2 unrelated subjects, failure to thrive 3/3) and provide plausible explanations for the variability / discordance of others eg:
- Cyanotic heart disease explaining discordance in cognitive outcome among sibs
- Incomplete penetrance for CHD (and/or ID or mandibular anomaly) as for few AR disorders and/or
- Additional pathogenic variants possibly explaining the CHD in the first subject.

There is no associated phenotype in OMIM or G2P. SysID includes PLXNA2 among the candidate ID genes.
Sources: Literature, Other
Intellectual disability syndromic and non-syndromic v0.4051 VPS50 Konstantinos Varvagiannis gene: VPS50 was added
gene: VPS50 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: VPS50 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: VPS50 were set to 34037727
Phenotypes for gene: VPS50 were set to Neonatal cholestatic liver disease; Failure to thrive; Profound global developmental delay; Postnatal microcephaly; Seizures; Abnormality of the corpus callosum
Penetrance for gene: VPS50 were set to Complete
Review for gene: VPS50 was set to AMBER
Added comment: Schneeberger et al (2021 - PMID: 34037727) describe the phenotype of 2 unrelated individuals with biallelic VPS50 variants.

Common features included transient neonatal cholestasis, failure to thrive, severe DD with failure to achieve milestones (last examination at 2y and 2y2m respectively), postnatal microcephaly, seizures (onset at 6m and 25m) and irritability. There was corpus callosum hypoplasia on brain imaging.

Both individuals were homozygous for variants private to each family (no/not known consanguinity applying to each case). The first individual was homozygous for a splicing variant (NM_017667.4:c.1978-1G>T) and had a similarly unaffected sister deceased with no available DNA for testing. The other individual was homozygous for an in-frame deletion (c.1823_1825delCAA / p.(Thr608del)).

VPS50 encodes a critical component of the endosome-associated recycling protein (EARP) complex, which functions in recycling endocytic vesicles back to the plasma membrane [OMIM based on Schindler et al]. The complex contains VPS50, VPS51, VPS52, VPS53, the three latter also being components of GARP (Golgi-associated-retrograde protein) complex. GARP contains VPS54 instead of VPS50 and is required for trafficking of proteins to the trans-golgi network. Thus VPS50 (also named syndetin) and VPS54 function in the EARP and GARP complexes, to define directional movement of their endocytic vesicles [OMIM based on Schindler et al]. The VPS50 subunit is required for recycling of the transferrin receptor.

As discussed by Schneeberger et al (refs provided in text):
- VPS50 has a high expression in mouse and human brain as well as throughout mouse brain development.
- Mice deficient for Vps50 have not been reported. vps50 knockdown in zebrafish results in severe developmental defects of the body axis. Knockout mice for other proteins of the EARP/GARP complex (e.g. Vps52, 53 and 54) display embryonic lethality.

Studies performed by Schneeberger et al included:
- Transcript analysis for the 1st variant demonstrated skipping of ex21 (in patient derived fabriblasts) leading to an in frame deletion of 81 bp (r.1978_2058del) with predicted loss of 27 residues (p.Leu660_Leu686del).
- Similar VPS50 mRNA levels but significant reduction of protein levels (~5% and ~8% of controls) were observed in fibroblasts from patients 1 and 2. Additionally, significant reductions in the amounts of VPS52 and VPS53 protein levels were observed despite mRNA levels similar to controls. Overall, this suggested drastic reduction of functional EARP complex levels.
- Lysosomes appeared to have similar morphology, cellular distribution and likely unaffected function in patient fibroblasts.
- Transferrin receptor recycling was shown to be delayed in patient fibroblasts suggestive of compromise of endocytic-recycling function.

As the authors comment, the phenotype of both individuals with biallelic VPS50 variants overlaps with the corresponding phenotype reported in 15 subjects with biallelic VPS53 or VPS51 mutations notably, severe DD/ID, microcephaly and early onset epilepsy, CC anomalies. Overall, for this group, they propose the term "GARP and/or EARP deficiency disorders".

There is no VPS50-associated phenotype in OMIM or G2P. SysID includes VPS50 among the ID candidate genes.

Consider inclusion in other relevant gene panels (e.g. for neonatal cholestasis, epilepsy, microcephaly, growth failure in early infancy, corpus callosum anomalies, etc) with amber rating pending further reports.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4040 PIDD1 Konstantinos Varvagiannis gene: PIDD1 was added
gene: PIDD1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PIDD1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PIDD1 were set to 28397838; 29302074; 33414379; 34163010
Phenotypes for gene: PIDD1 were set to Global developmental delay; Intellectual disability; Seizures; Autism; Behavioral abnormality; Psychosis; Pachygyria; Lissencephaly; Abnormality of the corpus callosum
Penetrance for gene: PIDD1 were set to Complete
Review for gene: PIDD1 was set to GREEN
Added comment: There is enough evidence to include this gene in the current panel with green rating.

Biallelic PIDD1 pathogenic variants have been reported in 26 individuals (11 families) with DD (all), variable degrees of ID (mild to severe), behavioral (eg. aggression/self-mutilation in several, ADHD) and/or psychiatric abnormalities (ASD, psychosis in 5 belonging to 3 families), well-controlled epilepsy is some (9 subjects from 6 families) and MRI abnormalities notably abnormal gyration pattern (pachygyria with predominant anterior gradient) as well as corpus callosum anomalies (commonly thinning) in several. Dysmorphic features have been reported in almost all, although there has been no specific feature suggested.

The first reports on the phenotype associated with biallelic PIDD1 mutations were made by Harripaul et al (2018 - PMID: 28397838) and Hu et al (2019 - PMID: 29302074) [both studies investigating large cohorts of individuals with ID from consanguineous families].

Sheikh et al (2021 - PMID: 33414379) provided details on the phenotype of 15 individuals from 5 families including those from the previous 2 reports and studied provided evidence on the role of PIDD1 and the effect of variants.

Zaki et al (2021 - PMID: 34163010) reported 11 additional individuals from 6 consanguineous families, summarize the features of all subjects published in the literature and review the neuroradiological features of the disorder.

PIDD1 encodes p53-induced death domain protein 1. The protein is part of the PIDDosome, a multiprotein complex also composed of the bipartite linker protein CRADD (also known as RAIDD) and the proform of caspase-2 and induces apoptosis in response to DNA damage.

There are 5 potential PIDD1 mRNA transcript variants with NM_145886.4 corresponding to the longest. Similar to the protein encoded by CRADD, PIDD1 contains a death domain (DD - aa 774-893). Constitutive post-translational processing gives PIDD1-N, PIDD1-C the latter further processed into PIDD1-CC (by auto-cleavage). Serine residues at pos. 446 and 588 are involved in this autoprocessing generating PIDD1-C (aa 446-910) and PIDD1-CC (aa 774-893). The latter is needed for caspase-2 activation.

Most (if not all) individuals belonged to consanguineous families of different origins and harbored pLoF or missense variants.

Variants reported so far include : c.2587C>T; p.Gln863* / c.1909C>T ; p.Arg637* / c.2443C>T / p.Arg815Trp / c.2275-1G>A which upon trap assay was shown to lead to skipping of ex15 with direct splicing form exon14 to the terminal exon 16 (resulting to p.Arg759Glyfs*1 with exlcusion of the entire DD) / c.2584C>T; p.Arg862Trp / c.1340G>A; p.Trp447* / c.2116_2120del; p.Val706His*, c.1564_1565del; p.Gly602fs*26

Evidence so far provided includes:
- Biallelic CRADD variants cause a NDD disorder and a highly similar gyration pattern.
- Confirmation of splicing effect (eg. for c.2275-1G>A premature stop in position 760) or poor expression (NM_145886.3:c.2587C>T; p.Gln863*). Arg815Trp did not affect autoprocessing or protein stability.
- Abnormal localization pattern, loss of interaction with CRADD and failure to activate caspase-2 (MDM2 cleavage assay) [p.Gln863* and Arg815Trp]
- Available expression data from GTEx (PIDD1 having broad expression in multiple tissues, but higher in brain cerebellum) as well as BrainSpan and PsychEncode studies suggesting high coexpression of PIDD1, CRADD and CASP2 in many regions in the developing human brain.
- Variants in other genes encoding proteins interacting with PIDD1 (MADD, FADD, DNAJ, etc) are associated with NDD.

Pidd-1 ko mice (ex3-15 removal) lack however CNS-related phenotypes. These show decreased anxiety but no motor anomalies. This has also been the case with Cradd-/- mice displaying no significant CNS phenotypes without lamination defects.

There is currently no associated phenotype in OMIM, PanelApp Australia. PIDD1 is listed in the DD panel of G2P (PIDD1-related NDD / biallelic / loss of function / probable) . SysID includes PIDD1 among the current primary ID genes.

Overall the gene appears to be relevant for the epilepsy panel, panels for gyration and/or corpus callosum anomalies etc.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4033 ACTL6A Zornitza Stark changed review comment from: Two individuals from unrelated families reported with missense variants in this gene, and one with a splice-site variant. Part of the BAF complex. Only one missense confirmed de novo, pathogenicity of the other variant uncertain.; to: Two individuals from unrelated families reported with missense variants in this gene, and one with a splice-site variant. Part of the BAF complex. Only one missense confirmed de novo, pathogenicity of the other variant uncertain.
PMID 31994175: fourth individual reported, recurrent de novo p.Arg377Trp
Intellectual disability syndromic and non-syndromic v0.4033 ACTL6A Zornitza Stark changed review comment from: Two individuals from unrelated families reported with missense variants in this gene. Part of the BAF complex. Only one confirmed de novo.; to: Two individuals from unrelated families reported with missense variants in this gene, and one with a splice-site variant. Part of the BAF complex. Only one missense confirmed de novo, pathogenicity of the other variant uncertain.
Intellectual disability syndromic and non-syndromic v0.4028 MAST3 Zornitza Stark gene: MAST3 was added
gene: MAST3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: MAST3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MAST3 were set to 34185323
Phenotypes for gene: MAST3 were set to Developmental and epileptic encephalopathy
Review for gene: MAST3 was set to GREEN
Added comment: Eleven individuals reported with de novo missense variants in the STK domain, including two recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. Limited functional data.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4023 AP1G1 Zornitza Stark changed review comment from: Two bi-allelic homozygous missense variants were found in two distinct families with Italian and Pakistani origins; homozygous missense variants.

Eight de novo heterozygous variants were identified in nine isolated affected individuals from nine families; including five missense, two frameshift, and one intronic variant that disrupts the canonical splice acceptor site.

Knocking out AP1G1 Zebrafish model resulted in severe developmental abnormalities and increased lethality.

All individuals had neurodevelopmental disorder (NDD) including global developmental delay and ID, which varied in severity from mild to severe.
Sources: Literature; to: Two bi-allelic homozygous missense variants were found in two distinct families with Italian and Pakistani origins; homozygous missense variants.

Eight de novo heterozygous variants were identified in nine isolated affected individuals from nine families; including five missense, two frameshift, and one intronic variant that disrupts the canonical splice acceptor site.

Knocking out AP1G1 Zebrafish model resulted in severe developmental abnormalities and increased lethality.

All individuals had neurodevelopmental disorder (NDD) including global developmental delay and ID, which varied in severity from mild to severe.

GREEN for mono-allelic, AMBER for bi-allelic.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4023 AP1G1 Zornitza Stark gene: AP1G1 was added
gene: AP1G1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: AP1G1 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: AP1G1 were set to 34102099
Phenotypes for gene: AP1G1 were set to Neurodevelopmental disorder (NDD); Intellectual Disability; Epilepsy
Review for gene: AP1G1 was set to GREEN
Added comment: Two bi-allelic homozygous missense variants were found in two distinct families with Italian and Pakistani origins; homozygous missense variants.

Eight de novo heterozygous variants were identified in nine isolated affected individuals from nine families; including five missense, two frameshift, and one intronic variant that disrupts the canonical splice acceptor site.

Knocking out AP1G1 Zebrafish model resulted in severe developmental abnormalities and increased lethality.

All individuals had neurodevelopmental disorder (NDD) including global developmental delay and ID, which varied in severity from mild to severe.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4020 CLCN3 Zornitza Stark gene: CLCN3 was added
gene: CLCN3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CLCN3 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal
Publications for gene: CLCN3 were set to 34186028
Phenotypes for gene: CLCN3 were set to Neurodevelopmental disorder
Mode of pathogenicity for gene: CLCN3 was set to Other
Review for gene: CLCN3 was set to GREEN
Added comment: 11 individuals reported, 9 that carried 8 different rare heterozygous missense variants in CLCN3, and 2 siblings that were homozygous for an NMD-predicted frameshift variant likely abolishing ClC-3 function. All missense variants were confirmed to be de novo in eight individuals for whom parental data was available.

The 11 individuals in the cohort share clinical features of variable severity. All 11 have GDD or ID and dysmorphic features, and a majority has mood or behavioural disorders and structural brain abnormalities:
- Structural brain abnormalities on MRI (9/11) included partial or full agenesis of the corpus callosum (6/9), disorganized cerebellar folia (4/9), delayed myelination (3/9), decreased white matter volume (3/9), pons hypoplasia (3/9), and dysmorphic dentate nuclei (3/9). Six of those with brain abnormalities also presented with seizures.
- Nine have abnormal vision, including strabismus in four and inability to fix or follow in the two with homozygous loss-of-function variants.
- Hypotonia ranging from mild to severe was reported in 7 of the 11 individuals.
- Six have mood or behavioural disorders, particularly anxiety (3/6).
- Consistent dysmorphic facial features included microcephaly, prominent forehead, hypertelorism, down-slanting palpebral fissures, full cheeks, and micrognathia.

The severity of disease in the two siblings with homozygous disruption of ClC-3 is consistent with the drastic phenotype seen in Clcn3 KO mice. The disease was more severe in two siblings carrying homozygous loss-of-function variants with the presence of GDD, absent speech, seizures, and salt and pepper fundal pigmentation in both individuals, with one deceased at 14 months of age. The siblings also had significant neuroanatomical findings including diffusely decreased white matter volume, thin corpora callosa, small hippocampi, and disorganized cerebellar folia. Supporting biallelic inheritance for LoF variants, disruption of mouse Clcn3 results in drastic neurodegeneration with loss of the hippocampus a few months after birth and early retinal degeneration. Clcn3−/− mice display severe neurodegeneration, whereas heterozygous Clcn3+/− mice appear normal.

Patch-clamp studies were used to investigate four of the missense variants. These suggested a gain of function in two variants with increased current in HEK cells, however they also showed reduced rectification of voltage and a loss of transient current, plus decreased current amplitude, glycosylation and surface expression when expressed in oocytes, and were suspected to interfere with channel gating and a negative feedback mechanism. These effects were also shown to vary depending on pH levels. The current of the remaining two variants did not differ from WT. For heterozygous missense variants, the disruption induced may be at least partially conferred to mutant/WT homodimers and mutant/ClC-4 heterodimers.

Both loss and gain of function in this gene resulted in the same phenotype.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4016 SPTBN1 Belinda Chong changed review comment from: PMID: 34211179
- Heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures; behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features.
- Show that these SPTBN1 variants lead to effects that affect βII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics.

PMID: 33847457
- Common features include global developmental delays, intellectual disability, and behavioral disturbances. Autistic features (4/6) and epilepsy (2/7) or abnormal electroencephalogram without overt seizures (1/7) were present in a subset.
- identified seven unrelated individuals with heterozygous SPTBN1 variants: two with de novo missense variants and five with predicted loss-of-function variants (found to be de novo in two, while one was inherited from a mother with a history of learning disabilities).
- Identification of loss-of-function variants suggests a haploinsufficiency mechanism, but additional functional studies are required to fully elucidate disease pathogenesis.
Sources: Literature
Sources: Literature; to: PMID: 34211179
- Heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures (9/29); behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features.
- Show that these SPTBN1 variants lead to effects that affect βII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics.

PMID: 33847457
- Common features include global developmental delays, intellectual disability, and behavioral disturbances. Autistic features (4/6) and epilepsy (2/7) or abnormal electroencephalogram without overt seizures (1/7) were present in a subset.
- identified seven unrelated individuals with heterozygous SPTBN1 variants: two with de novo missense variants and five with predicted loss-of-function variants (found to be de novo in two, while one was inherited from a mother with a history of learning disabilities).
- Identification of loss-of-function variants suggests a haploinsufficiency mechanism, but additional functional studies are required to fully elucidate disease pathogenesis.
Sources: Literature
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4015 SPTBN1 Belinda Chong gene: SPTBN1 was added
gene: SPTBN1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SPTBN1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: SPTBN1 were set to PMID: 34211179 PMID: 33847457
Phenotypes for gene: SPTBN1 were set to Neurodevelopmental Syndrome
Review for gene: SPTBN1 was set to GREEN
Added comment: PMID: 34211179
- Heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures; behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features.
- Show that these SPTBN1 variants lead to effects that affect βII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics.

PMID: 33847457
- Common features include global developmental delays, intellectual disability, and behavioral disturbances. Autistic features (4/6) and epilepsy (2/7) or abnormal electroencephalogram without overt seizures (1/7) were present in a subset.
- identified seven unrelated individuals with heterozygous SPTBN1 variants: two with de novo missense variants and five with predicted loss-of-function variants (found to be de novo in two, while one was inherited from a mother with a history of learning disabilities).
- Identification of loss-of-function variants suggests a haploinsufficiency mechanism, but additional functional studies are required to fully elucidate disease pathogenesis.
Sources: Literature
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4013 EDEM3 Michelle Torres gene: EDEM3 was added
gene: EDEM3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: EDEM3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EDEM3 were set to 34143952
Phenotypes for gene: EDEM3 were set to EDEM3-congenital disorder of glycosylation
Review for gene: EDEM3 was set to GREEN
Added comment: PMID: 34143952: 7 families (11 individuals) with 6x PTV and 2x missense variants with neurodevelopmental delay and variable facial dysmorphisms. The unaffected parents were all heterozygous carriers. Functional show LoF of EDEM3 enzymatic activity.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4002 SYNCRIP Konstantinos Varvagiannis gene: SYNCRIP was added
gene: SYNCRIP was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SYNCRIP was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: SYNCRIP were set to 34157790; 30504930; 27479843; 23020937
Phenotypes for gene: SYNCRIP were set to Global developmental delay; Intellectual disability; Autism; Myoclonic atonic seizures; Abnormality of nervous system morphology
Review for gene: SYNCRIP was set to AMBER
Added comment: Semino et al (2021 - PMID: 34157790) provide clinical details on 3 unrelated individuals with de novo SYNCRIP variants and provide a review of 5 additional subjects previously identified within large cohorts in the literature and databases.

Features included DD, ID (7/7 for whom this information was available), ASD or autistic features (4/7). MRI abnormalities were observed in 3 (widening of CSF spaces, periventricular nodular heterotopia, prominent lat. ventricles). Epilepsy (myoclonic-astatic epilepsy / Doose syndrome) was reported for 2(/8) individuals.

The 3 patients here reported were identified following trio/singleton exome with Sanger confirmation of the variants and their de novo occurrence.

Variants are in almost all cases de novo (7/7 for whom this was known) and in 5/8 cases were pLoF, in 2/8 missense SNVs while a case from DECIPHER had a 77.92 kb whole gene deletion not involving other genes with unknown inheritance.

Overall the variants reported to date include [NM_006372.5]:
1 - c.858_859del p.(Gly287Leufs*5)
2 - c.854dupA p.(Asn285Lysfs*8)
3 - c.734T>C p.(Leu245Pro)
4 - chr6:85605276-85683190 deletion (GRCh38)
5 - c.629T>C p.(Phe210Ser)
6 - c.1573_1574delinsTT p.(Gln525Leu)
7 - c.1247_1250del p.(Arg416Lysfs*145)
8 - c.1518_1519insC p.(Ala507Argfs*14)

[P1-3: this report, P4: DECIPHER 254774, P5-6: Guo et al 2019 - PMID: 30504930, P7: Lelieveld et al 2016 - PMID: 27479843, P8: Rauch et al 2012 - PMID: 23020937 / all other Refs not here reviewed, clinical details summarized by Semino et al in table 1]

SYNCRIP (also known as HNRNPQ) encodes synaptotagmin‐binding cytoplasmic RNA‐interacting protein. As the authors note, this RNA-binding protein is involved in multiple pathways associated with neuronal/muscular developmental disorders. Several references are provided for its involvement in regulation of RNA metabolism, among others sequence recognition, pre-mRNA splicing, translation, transport and degradation.

Mutations in other RNA-interacting proteins and hnRNP members (e.g. HNRNPU, HNRNPD) are associated with NDD.

The missense variant (p.Leu245Pro) is within RRM2 one of the 3 RNA recognition motif (RRM) domains of the protein. These 3 domains, corresponding to the central part of the protein (aa 150-400), are relatively intolerant to variation (based on in silico predictions and/or variation in gnomAD). Leu245 localizes within an RNA binding pocket and in silico modeling suggests alteration of the tertiary structure and RNA-binding capacity of RRM2.

There are no additional studies performed.

Overall haploinsufficiency appears to be the underlying disease mechanism based on the truncating variants and the gene deletion. [pLI in gnomAD : 1, %HI : 2.48%]

Animal models are not discussed.

There is no associated phenotype in OMIM. This gene is included in the DD panel of G2P (monoallelic LoF variants / SYNCRIP-related developmental disorder). SysID also lists SYNCRIP within the current primary ID genes.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.4001 CAMK4 Konstantinos Varvagiannis gene: CAMK4 was added
gene: CAMK4 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature,Other
Mode of inheritance for gene: CAMK4 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: CAMK4 were set to 30262571; 33098801; 33211350
Phenotypes for gene: CAMK4 were set to Global developmental delay; Intellectual disability; Autism; Behavioral abnormality; Abnormality of movement; Dystonia; Ataxia; Chorea; Myoclonus
Penetrance for gene: CAMK4 were set to Complete
Review for gene: CAMK4 was set to GREEN
Added comment: 3 publications by Zech et al (2018, 2020 - PMIDs : 30262571, 33098801, 33211350) provide clinical details on 3 individuals, each harboring a private de novo CAMK4 variant.

Overlapping features included DD, ID, behavoral issues, autism and abnormal hyperkinetic movements. Dystonia and chorea in all 3 appeared 3-20 years after initial symptoms.

CAMK4 encodes Calcium/Calmodulin-dependent protein kinase IV, an important mediator of calcium-mediated activity and dynamics, particularly in the brain. It is involved in neuronal transmission, synaptic plasticity, and neuronal gene expression required for brain development and neuronal homeostasis (summary by OMIM based on Zech et al, 2018).

The 473 aa enzyme has a protein kinase domain (aa 46-300) and a C-terminal autoregulatory domain (aa 305-341) the latter comprising an autoinhibitory domain (AID / aa 305-321) and a calmodulin-binding domain (CBD / aa 322-341) [NP_001735.1 / NM_001744.4 - also used below].

Variants in all 3 subjects were identified following trio-WES and were in all cases protein-truncating, mapping to exon 10 or exon 10-intron 10 junction, expected to escape NMD and cause selective abrogation of the autoinhibitory domain (aa 305-321) leading overall to gain-of-function.

Variation databases include pLoF CAMK4 variants albeit in all cases usptream or downstream of this region (pLI of this gene in gnomAD: 0.51). Variants leading to selective abrogation of the autoregulatory domain have not been reported.

Extensive evidence for the GoF effect of the variant has been provided in the first publication. Several previous studies have demonstrated that abrogation of the AID domain leads to consitutive activation (details below).

Mouse models - though corresponding to homozygous loss of function - support a role for CAMKIV in cognitive and motor symptoms. Null mice display tremulous and ataxic movements, deficiencies in balance and sensorimotor performance associated with reduced number of Purkinje neurons (Ribar et al 2000, PMID: 11069976 - not reviewed). Wei et al (2002, PMID: 12006982 - not reviewed) provided evidence for alteration in hippocampal physiology and memory function.

Heterozygous mutations in other genes for calcium/calmodulin-dependent protein kinases (CAMKs) e.g. CAMK2A/CAMK2B (encoding subunits of CAMKII) have been reported in individuals with ID.

---

The proband in the first publication (PMID: 30262571) was a male with DD, ID, behavioral difficulties (ASD, autoaggression, stereotypies) and hyperkinetic movement disorder (myoclonus, chorea, ataxia) with severe generalized dystonia (onset at the age of 13y). Brain MRI demonstrated cerebellar atrophy.

Extensive work-up incl. karyotyping, CMA, DYT-TOR1A, THAP1, GCH1, SCA1/2/3/6/7/8/12/17, Friedreich's ataxia and FMR1 analysis was negative.F

Trio WES identified a dn splice site variant (c.981+1G>A) in the last exon-intron junction. RT-PCR followed by gel electrophoresis and Sanger in fibroblasts from an affected and control subject revealed that the proband had - as predicted by the type/location of the variant - in equal amount 2 cDNA products, a normal as well as a truncated one.

Sequencing of the shortest revealed utilization of a cryptic donor splice site upstream of the mutated donor leading to a 77bp out-of-frame deletion and introduction of a premature stop codon in the last codon (p.Lys303Serfs*28). Western blot in fibroblast cell lines revealed 2 bands corresponding to the normal protein product as well as to the p.Lys303Serfs*28 although expression of the latter was lower than that of the full length protein.

Several previous studies have shown that mutant CAMKIV species that lack the autoinhibitory domain are consitutively active (several Refs provided). Among others Chatila et al (1996, PMID: 8702940) studied an in vitro-engineered truncation mutant (Δ1-317 - truncation at position 317 of the protein) with functionally validated gain-of-function effect.

To prove enhanced activity of the splicing variant, Zech et al assessed phosphorylation of CREB (cyclic AMP-responsive element binding protein), a downstream substrate of CAMKIV. Immunobloting revealed significant increase of CREB phosphorylation in patient fibroblasts compared to controls. Overactivation of CAMKIV signaling was reversed when cells were treated with STO-609 an inhibitor of CAMKK, the ustream activator of CAMKIV.

Overall the authors demonstrated that loss of CAMKIV autoregulatory domain due to this splice variant had a gain-of-function effect.

----

Following trio-WES, Zech et al (2020 - PMID: 33098801) identified another relevant subject within cohort of 764 individuals with dystonia. This 12-y.o. male, harboring a different variant affecting the same donor site (c.981+1G>T), presented DD, ID, dystonia (onset at 3y) and additional movement disorders (myoclonus, ataxia) as well as similar behavior (ASD, autoaggression, stereotypies). [Details in suppl. p20].

----

Finally Zech et al (2020 - PMID: 33211350) reported on a 24-y.o. woman with adolescence onset choreodystonia. Other features included DD, moderate ID, absence seizures in infancy, OCD with anxiety and later diagnosis of ASD. Trio WES revealed a dn stopgain variant (c.940C>T; p.Gln314*).

----

There is no associated phenotype in OMIM, G2P.

In SysID CAMK4 is listed among the current primary ID genes.

----

Please consider inclusion in other relevant panels.
Sources: Literature, Other
Intellectual disability syndromic and non-syndromic v0.3982 CEP85L Zornitza Stark gene: CEP85L was added
gene: CEP85L was added to Intellectual disability syndromic and non-syndromic. Sources: Expert Review
Mode of inheritance for gene: CEP85L was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CEP85L were set to 32097630
Phenotypes for gene: CEP85L were set to Lissencephaly, posterior predominant
Review for gene: CEP85L was set to GREEN
Added comment: Thirteen individuals reported with mono allelic variants in this gene, inherited in two of the families. Mouse model had neuronal migration defects.
Sources: Expert Review
Intellectual disability syndromic and non-syndromic v0.3978 LINGO4 Laura Raiti gene: LINGO4 was added
gene: LINGO4 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: LINGO4 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LINGO4 were set to PMID: 33098801
Phenotypes for gene: LINGO4 were set to Developmental Delay, Intellectual disability, speech disorder
Review for gene: LINGO4 was set to GREEN
Added comment: 3 unrelated individuals
1 x individual compound heterozygous for 2x missense variants:
c.679C>A; c.1262G>A p.Leu227Met; p.Arg421Gln comp het. Phenotype: infancy-onset
generalized dystonia; DD/hypo, ID, speech disorder (isolated plus non-MD symptoms) NDD

1 x individual homozygous for missense variant: c.679C>A p.Leu227Met Phenotype: DD/hypo, ID, speech disorder

1 x individual homozygous for missense variant: c.1673G>A p.Ser558Asn Phenotype: DD/hypo, ID, speech disorder
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3978 IMPDH2 Laura Raiti gene: IMPDH2 was added
gene: IMPDH2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: IMPDH2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: IMPDH2 were set to PMID: 33098801
Added comment: 6 unrelated individuals
1x individual in a dystonia cohort index case with infancy-onset dystonia and other neurological manifestations with a de-novo missense variant, c.338G>A (p.Gly113Glu) in IMPDH2, predicted to disrupt an invariant residue within the cystathionine-β-synthase (CBS) domain pair of the encoded protein.
IMPDH2 encodes IMPDH2, a key enzyme in the purine biosynthetic pathway, expressed throughout the brain and not linked previously to any human Mendelian condition.
1x individual with a de-novo substitution, c.337G>A (p.Gly113Arg), was found in in-house whole-exome sequencing data from 500 individuals with neurodevelopmental disorders. Through GeneMatcher, de novo variants identified:
3 x missense: c.729G>C (p.Gln243His), c.619G>C (p.Gly207Arg), and c.619G>A (p.Gly207Arg)
1 x deletion: c.478_480delTCC (p.Ser160del)
The six variants were predicted to be deleterious and none of them seen in control databases. All affected conserved amino acids and resided in and around the cystathionine-β-synthase domain pair.
The described variants are situated in and around the CBS domain pair, a regulatory element in which clustering of pathogenic missense variants has already been shown for the homologue of IMPDH2, IMPDH1.

The variant carriers shared similar neurodevelopmental phenotypes. Apart from the dystonia cohort index case, one participant had evidence of dystonic posturing. Modelling of the variants on 3D protein structures revealed spatial clustering near specific functional sites, predicted to result in deregulation of IMPDH2 activity. Additionally, thermal-shift assays showed that the c.619G>A (p.Gly207Arg) variant, identified as within the CBS domain pair, and c.729G>C (p.Gln243His), which is in close vicinity, affected the stability or folding behaviour of IMPDH2.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3978 ATG7 Zornitza Stark changed review comment from: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The more severely affected individuals had spastic paraplegia and inability to walk.

Functional data including mouse model.
Sources: Literature; to: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The more severely affected individuals had spastic paraplegia and inability to walk.

Functional data including mouse model.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3978 ATG7 Zornitza Stark changed review comment from: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The ore severely affected individuals had spastic paraplegia and inability to walk.

Functional data including mouse model.
Sources: Literature; to: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The more severely affected individuals had spastic paraplegia and inability to walk.

Functional data including mouse model.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3977 ATG7 Zornitza Stark gene: ATG7 was added
gene: ATG7 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ATG7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ATG7 were set to 34161705
Phenotypes for gene: ATG7 were set to Spinocerebellar ataxia, SCAR31, MIM#619422
Review for gene: ATG7 was set to GREEN
Added comment: 12 individuals from 5 unrelated families reported with a complex neurodevelopmental disorder and bi-allelic variants in this gene. Age range from 21 months to 71 years of age. Main clinical features included axial hypotonia, variably impaired intellectual development with poor or absent speech, and delayed walking (up to 7 years of age) or inability to walk. All had ataxia, often with tremor or dyskinesia, as well as dysarthria associated with cerebellar hypoplasia on brain imaging. Most had optic atrophy, and some had ptosis, chronic progressive external ophthalmoplegia, retinopathy, and strabismus; 1 had early-onset cataracts. The ore severely affected individuals had spastic paraplegia and inability to walk.

Functional data including mouse model.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3975 C2orf69 Zornitza Stark gene: C2orf69 was added
gene: C2orf69 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: C2orf69 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: C2orf69 were set to 34038740; 33945503
Phenotypes for gene: C2orf69 were set to Combined oxidative phosphorylation deficiency-53 (COXPD53), MIM#619423
Review for gene: C2orf69 was set to GREEN
Added comment: PMID 34038740: 20 affected children from 8 unrelated families reported, presenting with fatal syndrome consisting of severe autoinflammation and progredient leukoencephalopathy with recurrent seizures; 12 of these subjects, whose DNA was available, segregated homozygous loss-of-function C2orf69 variants. Endogenous C2ORF69 was found to be (1) loosely bound to mitochondria, (2) affects mitochondrial membrane potential and oxidative respiration in cultured neurons, and (3) controls the levels of the glycogen branching enzyme 1 (GBE1) consistent with a glycogen-storage-associated mitochondriopathy. Zebrafish model.

PMID 33945503: 8 individuals from 5 families reported with muscle hypotonia, developmental delay, progressive microcephaly, and brain MRI abnormalities. Age at onset ranged from birth to 6 months of age. Six patients had vision impairment, liver abnormalities, inflammation/inflammatory arthritis, and 5 patients had seizures.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3955 HID1 Zornitza Stark gene: HID1 was added
gene: HID1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: HID1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: HID1 were set to 33999436
Phenotypes for gene: HID1 were set to Syndromic infantile encephalopathy; Hypopituitarism
Review for gene: HID1 was set to GREEN
Added comment: 7 individuals from 6 unrelated families reported. Clinical features included: hypopituitarism in combination with brain atrophy, thin corpus callosum, severe developmental delay, visual impairment, and epilepsy
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3951 JPH3 Seb Lunke gene: JPH3 was added
gene: JPH3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: JPH3 was set to Unknown
Publications for gene: JPH3 were set to 33824468
Phenotypes for gene: JPH3 were set to Intellectual disability; dystonia
Review for gene: JPH3 was set to RED
Added comment: One homozygous truncating variant (NM_020655.4: c.1740dup; p.(Val581Argfs*137)) found in a female individual affected with genetically undetermined neurodevelopmental anomalies (including delayed motor milestones, abnormal social communication, language difficulties and borderline cognitive impairment) and paroxysmal attacks of dystonia since her early infancy. No functional work were performed.

Only STRs disease causing, see separate STR list. No evidence for SNVs etc.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3945 ATP1A2 Zornitza Stark edited their review of gene: ATP1A2: Added comment: PMID 33880529: six individuals with de novo missense variants reported and DD/EE/PMG.; Changed publications: 33880529; Changed phenotypes: Alternating hemiplegia of childhood 1, MIM# 104290, Developmental and epileptic encephalopathy, polymicrogyria
Intellectual disability syndromic and non-syndromic v0.3943 ATP1A3 Zornitza Stark edited their review of gene: ATP1A3: Added comment: PMID 33880529: 16 individuals reported with DD/EE and PMG.; Changed rating: GREEN; Changed publications: 33880529; Changed phenotypes: Alternating hemiplegia of childhood 2, MIM#614820, Developmental and epileptic encephalopathy, polymicrogyria
Intellectual disability syndromic and non-syndromic v0.3937 EPHA7 Zornitza Stark gene: EPHA7 was added
gene: EPHA7 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
SV/CNV tags were added to gene: EPHA7.
Mode of inheritance for gene: EPHA7 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: EPHA7 were set to 34176129
Phenotypes for gene: EPHA7 were set to Intellectual disability
Review for gene: EPHA7 was set to AMBER
Added comment: Lévy et al (2021 - PMID: 34176129) provide evidence that haploinssuficiency of EPHA7 results in a neurodevelopmental disorder.

The authors report on 12 individuals belonging to 9 unrelated families, all harboring with 6q microdeletions spanning EPHA7.

Overlapping features included DD (13/13), ID (10/10 - mild in most cases, individuals with larger CNVs/additional variants had more severe phenotype), speech delay and behavioral disorders. Variable other features incl. hypotonia (70%), non specific facial features, eye abnormalities (40%) and cardiac defects (25%).

The CNVs ranged from 152 kb to few Mb in size but in 4 subjects (P5-8) were only minimal, involving only EPHA7.



9 out of 12 individuals had inherited the deletion (5 subjects paternal, 4 maternal), in 1 subject (P12) this occured de novo, while for 2 others inheritance was not specified. Most deletions were inherited from an unaffected parent (in 6/7 families), with unclear contribution in a further one.

The authors discuss on previous studies suggesting an important role for EphA7 in brain development (modulation of cell-cell adhesion and repulsion, regulation of dendrite morphogenesis in early corticogenesis, role in dendritic spine formation later in development. EphA7 has also been proposed to drive neuronal maturation and synaptic function).

Haploinsufficiency for other ephrins or ephrin receptors has been implicated in other NDDs.

Overall Lévy et al promote incomplete penetrance and variable expressivity with haploinsufficiency of this gene being a risk factor for NDD. [The gene has also an %HI of 2.76% and a pLI of 1].
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3929 ATP9A Zornitza Stark gene: ATP9A was added
gene: ATP9A was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ATP9A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ATP9A were set to http://dx.doi.org/10.1136/jmedgenet-2021-107843
Phenotypes for gene: ATP9A were set to Neurodevelopmental delay; Postnatal microcephaly; Failure to thrive; Gastrointestinal symptoms
Review for gene: ATP9A was set to AMBER
Added comment: Vogt et al. 2021 report on 3 individuals from 2 unrelated consanguineous families with different homozygous truncating variants in ATP9A, presenting with DD/ID of variable degree (2 mild, 1 severe), postnatal microcephaly (OFC range: −2.33 SD to −3.58 SD), failure to thrive, and gastrointestinal symptoms. Patient-derived fibroblasts showed reduced expression of ATP9A, and consistent with previous findings also overexpression of interacting partners, ARPC3 and SNX3.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3913 CEP164 Zornitza Stark gene: CEP164 was added
gene: CEP164 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert Review
Mode of inheritance for gene: CEP164 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CEP164 were set to 34132027; 34013113; 32055034; 27708425; 22863007
Phenotypes for gene: CEP164 were set to Bardet-Biedl syndrome; Nephronophthisis 15, MIM# 614845; Oro-facio-digital syndrome
Review for gene: CEP164 was set to GREEN
Added comment: More than 10 unrelated families reported. Although this is labelled as a nephronophthisis gene in OMIM, some of the reported individuals have had features such as retinal involvement, ID and polydactyly to suggest a more BBS-like phenotype. Also note one individual reported with OFD-like phenotype.
Sources: Expert Review
Intellectual disability syndromic and non-syndromic v0.3875 IFT74 Zornitza Stark gene: IFT74 was added
gene: IFT74 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: IFT74 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: IFT74 were set to 27486776; 32144365; 33531668
Phenotypes for gene: IFT74 were set to Bardet-Biedl syndrome 20, MIM# 617119; Joubert syndrome
Review for gene: IFT74 was set to GREEN
Added comment: Two individuals reported with BBS phenotype.

PMID 33531668: Identified IFT74 as a JBTS-associated gene in 3 unrelated families through WES. All the affected individuals carried truncated variants and shared one missense variant (p.Q179E) found only in East Asians. The expression of the human p.Q179E-IFT74 variant displayed compromised rescue effects in zebrafish ift74 morphants. Attenuated ciliogenesis; altered distribution of IFT proteins and ciliary membrane proteins, including ARL13B, INPP5E, and GPR161; and disrupted hedgehog signaling were observed in patient fibroblasts with IFT74 variants.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3864 RFX4 Chirag Patel gene: RFX4 was added
gene: RFX4 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: RFX4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RFX4 were set to PMID: 33658631
Phenotypes for gene: RFX4 were set to ID, ASD, ADHD
Review for gene: RFX4 was set to GREEN
Added comment: Report of 38 individuals (from 33 unrelated families) with de novo or inherited loss of function variants in RFX3 (15 families), RFX4 (4 families), and RFX7 (14 families), identified through WES. Individuals share neurobehavioural features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes. These genes are potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3864 RFX3 Chirag Patel gene: RFX3 was added
gene: RFX3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: RFX3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RFX3 were set to PMID: 33658631
Phenotypes for gene: RFX3 were set to ID, ASD, ADHD
Review for gene: RFX3 was set to GREEN
Added comment: Report of 38 individuals (from 33 unrelated families) with de novo or inherited loss of function variants in RFX3 (15 families), RFX4 (4 families), and RFX7 (14 families), identified through WES. Individuals share neurobehavioural features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes. These genes are potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3864 RFX7 Chirag Patel gene: RFX7 was added
gene: RFX7 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: RFX7 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RFX7 were set to PMID: 33658631
Phenotypes for gene: RFX7 were set to ID, ASD, ADHD
Review for gene: RFX7 was set to GREEN
Added comment: Report of 38 individuals (from 33 unrelated families) with de novo or inherited loss of function variants in RFX3 (15 families), RFX4 (4 families), and RFX7 (14 families), identified through WES. Individuals share neurobehavioural features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes. These genes are potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3862 FARSA Chirag Patel gene: FARSA was added
gene: FARSA was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: FARSA was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FARSA were set to PMID: 33598926
Phenotypes for gene: FARSA were set to Rajab interstitial lung disease with brain calcifications 2
Review for gene: FARSA was set to GREEN
gene: FARSA was marked as current diagnostic
Added comment: FARSA is a subunit with FARSB to form FARS1 enzyme. Bi-allelic mutations in FARSB are well described.
Schuch et al. (2021) report 3 unrelated individuals with bi-allelic variants in FARSA. Identified through WES and variants segregated with disease. Functional evidence was obtained with reduced FARS1 enzyme activity levels in fibroblasts or EBV-transformed lymphoblastoid cell lines (EBV-LCLs) of patients. Common to all was a chronic interstitial lung disease starting early in life and characterized by bilateral ground-glass opacification on HR-CT, and cholesterol pneumonitis in lung histology. Additional abnormalities in other organ systems include liver disease, neurological manifestations, and growth restriction.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3847 LTBP1 Chern Lim changed review comment from: PMID:33991472
- Premature truncating variants in multiple affected individuals from 4 unrelated consanguineous families.
- Affected individuals present with connective tissue features (cutis laxa and inguinal hernia), craniofacial dysmorphology, variable heart defects, and prominent skeletal features (craniosynostosis, short stature, brachydactyly, and syndactyly).
- Most of the affected individuals have developmental delay and other neurological features.
- Functional studies done on patient fibroblasts and zebrafish models.
Sources: Literature; to: PMID:33991472
- Premature truncating variants in multiple affected individuals from 4 unrelated consanguineous families.
- Affected individuals present with connective tissue features (cutis laxa and inguinal hernia), craniofacial dysmorphology, variable heart defects, and prominent skeletal features (craniosynostosis, short stature, brachydactyly, and syndactyly).
- Most of the affected individuals have developmental delay and other neurological features.
- Functional studies done on patient fibroblasts and zebrafish models.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3847 LTBP1 Chern Lim gene: LTBP1 was added
gene: LTBP1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: LTBP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LTBP1 were set to 33991472
Phenotypes for gene: LTBP1 were set to cutis laxa syndrome
Review for gene: LTBP1 was set to GREEN
gene: LTBP1 was marked as current diagnostic
Added comment: PMID:33991472
- Premature truncating variants in multiple affected individuals from 4 unrelated consanguineous families.
- Affected individuals present with connective tissue features (cutis laxa and inguinal hernia), craniofacial dysmorphology, variable heart defects, and prominent skeletal features (craniosynostosis, short stature, brachydactyly, and syndactyly).
- Most of the affected individuals have developmental delay and other neurological features.
- Functional studies done on patient fibroblasts and zebrafish models.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3847 PGM2L1 Chern Lim gene: PGM2L1 was added
gene: PGM2L1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PGM2L1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PGM2L1 were set to 33979636
Phenotypes for gene: PGM2L1 were set to Neurodevelopmental disorder
Review for gene: PGM2L1 was set to GREEN
gene: PGM2L1 was marked as current diagnostic
Added comment: PMID: 33979636:
- Hom/chet PTVs in 4 unrelated individuals. All four affected individuals had severe developmental and speech delay, dysmorphic facial features, ear anomalies, high arched palate, strabismus, hypotonia, and keratosis pilaris. Early obesity and seizures were present in three individuals.
- Studies on patient fibroblasts and cell lines indicated that PGM2L1 deficiency causes a decrease, but not a disappearance, of the sugar bisphosphates needed for the formation of NDP-sugars and that there is no evidence that this leads to a glycosylation defect.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3845 BCAS3 Paul De Fazio gene: BCAS3 was added
gene: BCAS3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: BCAS3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: BCAS3 were set to 34022130
Phenotypes for gene: BCAS3 were set to Syndromic neurodevelopmental disorder
Review for gene: BCAS3 was set to GREEN
gene: BCAS3 was marked as current diagnostic
Added comment: 15 individuals from eight unrelated families with germline bi-allelic loss-of-function variants in BCAS3. All probands share a global developmental delay accompanied by pyramidal tract involvement, microcephaly, short stature, strabismus, dysmorphic facial features, and seizures. Patient fibroblasts confirmed absence of BCAS3 protein.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3845 SRCAP Paul De Fazio changed review comment from: Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder Floating-Harbor syndrome (FLHS).

A cohort of 33 individuals with mostly de novo truncating variants both proximal and distal to the FLHS locus were found to have a distinct phenotype and DNA methylation pattern to FLHS.; to: Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS).

A cohort of 33 individuals with mostly de novo truncating variants both proximal and distal to the FLHS locus were found to have a distinct phenotype and DNA methylation pattern to FLHS, referred to by the authors as "non-FLHS SRCAP-related NDD".
Intellectual disability syndromic and non-syndromic v0.3820 EHMT1 Zornitza Stark commented on gene: EHMT1: Well established gene-disease association. Deletions are common. Key features includeID/seizures/microcephaly/dysmorphism/congenital anomalies. More than 100 individuals reported.
Intellectual disability syndromic and non-syndromic v0.3802 PSMC3 Zornitza Stark gene: PSMC3 was added
gene: PSMC3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PSMC3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PSMC3 were set to 32500975
Phenotypes for gene: PSMC3 were set to Deafness, cataract, impaired intellectual development, and polyneuropathy, MIM#619354
Review for gene: PSMC3 was set to AMBER
Added comment: Three affected individuals from a single consanguineous family reported with homozygous intronic variant. Animal model.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3800 GEMIN5 Zornitza Stark gene: GEMIN5 was added
gene: GEMIN5 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: GEMIN5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GEMIN5 were set to 33963192
Phenotypes for gene: GEMIN5 were set to Neurodevelopmental disorder with cerebellar atrophy and motor dysfunction, MIM# 619333
Review for gene: GEMIN5 was set to GREEN
Added comment: Neurodevelopmental disorder with cerebellar atrophy and motor dysfunction (NEDCAM) is an autosomal recessive disorder characterized by global developmental delay with prominent motor abnormalities, mainly axial hypotonia, gait ataxia, and appendicular spasticity. Affected individuals have cognitive impairment and speech delay; brain imaging shows cerebellar atrophy.

30 individuals from 22 unrelated families reported.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3787 PARP6 Zornitza Stark gene: PARP6 was added
gene: PARP6 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PARP6 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PARP6 were set to Cells 2021, 10(6), 1289; https://doi.org/10.3390/cells10061289
Phenotypes for gene: PARP6 were set to Intellectual disability; Epilepsy; Microcephaly
Review for gene: PARP6 was set to GREEN
Added comment: Four unrelated individuals reported with de novo variants in this gene and a neurodevelopmental phenotype. Supportive functional data. One pair of siblings with a homozygous missense: limited evidence for bi-allelic variants causing disease.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3786 UFSP2 Konstantinos Varvagiannis changed review comment from: Ni et al (2021 - PMID: 33473208) describe the phenotype of 8 children (belonging to 4 families - 2 of which consanguineous) homozygous for a UFSP2 missense variant [NM_018359.5:c.344T>A; p.(Val115Glu)].

Members of a broader consanguineous pedigree from Pakistan with 3 affected children with epilepsy and DD and ID underwent exome sequencing. All affected individuals were homozygous for the specific SNV with their parents (2 parent pairs, in both cases first cousins) being heterozygous. An unaffected sib was homozygous for the wt allele. Through genematching platforms 3 additional families with similarly affected individuals and homozygosity for the same variant were recruited. These additional families were from Pakistan (1/3) and Afganistan (2/3).

Based on ROH analysis from the broader first pedigree and an additional family the authors concluded on a single shared region of homozygosity on chr 4q. Lack of ES data did not allow verification of whether 2/4 families shared the same haplotype with the other 2.

The authors calculated the probability of the genotype-phenotype cosegragation occurring by chance (0.009) and this was lower than the recommended criterion (0.06) for strong evidence of pathogenicity.

Shared features included abnormal tone in most (hypotonia 6/8, limb hypertonia 1/8), seizures (8/8 - onset 2d - 7m), severe DD with speech delay/absent speech (8/8), ID (8/8), strabismus (6/8).

UFSP2 encodes UFM1-specific protease 2 involved in UFmylation, a post-translational protein modification. As summarized by the authors the cysteine protease encoded by this gene (as is also the case for UFSP1) cleaves UFM1 in the initial step of UFMylation. Apart from producing mature UFM1, the 2 proteases have also the ability to release UFM1 from UFMylated proteins, in the process of de-UFMylation. [several refs. provided]

UFMylation is important in brain development with mutations in genes encoding other components of the pathway reported in other NDD disorders (incl. UFM1, UBA5, UFC1).

Additional studies were carried to provide evidence for pathogenicity of this variant.

Skin biopsies from 3 individuals were carried out to establish fibroblast cultures. Immunoblotting revealed reduced UFSP2 levels relative to controls. mRNA levels measured by qRT-PCR revealed no differences compared to controls altogether suggesting normal mRNA but reduced protein stability.

The authors demonstrated increased levels of UFM1-conjugated proteins (incl. DDRGK1, or TRIP4). Ectopic expression of wt UFSP2 normalized the levels of UFMylated proteins in the fibroblasts which was not the case for the V115E variant. Further the variant was difficult to detect by immunoblotting consistent with an effect on protein destabilization.

Although disruption of UFMylation induces ER stress, this was not shown to occur in patient fibroblast lines, when assessed for ER stress markers.

Evaluation of data from the GTEx project, concerning UFSP2 as well as well as DDRGK1 or TRIP4 - an UFMylation target - revealed relevant expression in multiple regions of the human brain.

Overall the authors provide evidence for defective de-UFMylation in patient fibroblasts (presence of increased UFMylation marks). The authors stress out that the effect of the variant in UFMylation in brain is unknown, as UFSP1 or other enzymes might compensate in the presence of hypomorphic UFSP2 mutants.

Biallelic UFSP2 variants have previously been reported in 2 skeletal dysplasias [# 142669. BEUKES HIP DYSPLASIA; BHD and # 617974. SPONDYLOEPIMETAPHYSEAL DYSPLASIA, DI ROCCO TYPE; SEMDDR]. These disorders are not characterized by neurological dysfunction or epilepsy. The authors underscore the fact that variants identified in these disorders (Y290H, D526A, H428R) localize within the C-terminal catalytic (peptidase) domain [aa 278 – 461] while the variant here identified lies in the N-terminal substrate binding domain affecting protein stability/abundance.

In OMIM, only the 2 aforementioned disorders are currently associated with biallelic UFSP2 mutations. There is no associated phenotype in G2P. SysID includes UFSP2 among the primary ID genes.

You may consider inclusion in the current panel with amber/green rating.
Sources: Literature; to: Ni et al (2021 - PMID: 33473208) describe the phenotype of 8 children (belonging to 4 families - 2 of which consanguineous) homozygous for a UFSP2 missense variant [NM_018359.5:c.344T>A; p.(Val115Glu)].

Members of a broader consanguineous pedigree from Pakistan with 3 affected children with epilepsy and DD and ID underwent exome sequencing. All affected individuals were homozygous for the specific SNV with their parents (2 parent pairs, in both cases first cousins) being heterozygous. An unaffected sib was homozygous for the wt allele. Through genematching platforms 3 additional families with similarly affected individuals and homozygosity for the same variant were recruited. These additional families were from Pakistan (1/3) and Afganistan (2/3).

Based on ROH analysis from the broader first pedigree and an additional family the authors concluded on a single shared region of homozygosity on chr 4q. Lack of ES data did not allow verification of whether 2/4 families shared the same haplotype with the other 2.

The authors calculated the probability of the genotype-phenotype cosegragation occurring by chance (0.009) and this was lower than the recommended criterion (0.06) for strong evidence of pathogenicity.

Shared features included abnormal tone in most (hypotonia 6/8, limb hypertonia 1/8), seizures (8/8 - onset 2d - 7m), severe DD with speech delay/absent speech (8/8), ID (8/8), strabismus (6/8).

UFSP2 encodes UFM1-specific protease 2 involved in UFmylation, a post-translational protein modification. As summarized by the authors the cysteine protease encoded by this gene (as is also the case for UFSP1) cleaves UFM1 in the initial step of UFMylation. Apart from producing mature UFM1, the 2 proteases have also the ability to release UFM1 from UFMylated proteins, in the process of de-UFMylation. [several refs. provided]

UFMylation is important in brain development with mutations in genes encoding other components of the pathway reported in other NDD disorders (incl. UFM1, UBA5, UFC1).

Additional studies were carried to provide evidence for pathogenicity of this variant.

Skin biopsies from 3 individuals were carried out to establish fibroblast cultures. Immunoblotting revealed reduced UFSP2 levels relative to controls. mRNA levels measured by qRT-PCR revealed no differences compared to controls altogether suggesting normal mRNA but reduced protein stability.

The authors demonstrated increased levels of UFM1-conjugated proteins (incl. DDRGK1, or TRIP4). Ectopic expression of wt UFSP2 normalized the levels of UFMylated proteins in the fibroblasts which was not the case for the V115E variant. Further the variant was difficult to detect by immunoblotting consistent with an effect on protein destabilization.

Although disruption of UFMylation induces ER stress, this was not shown to occur in patient fibroblast lines, when assessed for ER stress markers.

Evaluation of data from the GTEx project, concerning UFSP2 as well as well as DDRGK1 or TRIP4 - an UFMylation target - revealed relevant expression in multiple regions of the human brain.

Overall the authors provide evidence for defective de-UFMylation in patient fibroblasts (presence of increased UFMylation marks). The authors stress out that the effect of the variant in UFMylation in brain is unknown, as UFSP1 or other enzymes might compensate in the presence of hypomorphic UFSP2 mutants.

**Monoallelic** (correction to previous review) UFSP2 variants have previously been reported in 2 skeletal dysplasias [# 142669. BEUKES HIP DYSPLASIA; BHD and # 617974. SPONDYLOEPIMETAPHYSEAL DYSPLASIA, DI ROCCO TYPE; SEMDDR]. These disorders are not characterized by neurological dysfunction or epilepsy. The authors underscore the fact that variants identified in these disorders (Y290H, D526A, H428R) localize within the C-terminal catalytic (peptidase) domain [aa 278 – 461] while the variant here identified lies in the N-terminal substrate binding domain affecting protein stability/abundance.

In OMIM, only the 2 aforementioned disorders are currently associated with biallelic UFSP2 mutations. There is no associated phenotype in G2P. SysID includes UFSP2 among the primary ID genes.

You may consider inclusion in the current panel with amber/green rating.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3785 UFSP2 Konstantinos Varvagiannis gene: UFSP2 was added
gene: UFSP2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: UFSP2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UFSP2 were set to 33473208
Phenotypes for gene: UFSP2 were set to Abnormal muscle tone; Seizures; Global developmental delay; Delayed speech and language development; Intellectual disability; Strabismus
Penetrance for gene: UFSP2 were set to Complete
Review for gene: UFSP2 was set to AMBER
Added comment: Ni et al (2021 - PMID: 33473208) describe the phenotype of 8 children (belonging to 4 families - 2 of which consanguineous) homozygous for a UFSP2 missense variant [NM_018359.5:c.344T>A; p.(Val115Glu)].

Members of a broader consanguineous pedigree from Pakistan with 3 affected children with epilepsy and DD and ID underwent exome sequencing. All affected individuals were homozygous for the specific SNV with their parents (2 parent pairs, in both cases first cousins) being heterozygous. An unaffected sib was homozygous for the wt allele. Through genematching platforms 3 additional families with similarly affected individuals and homozygosity for the same variant were recruited. These additional families were from Pakistan (1/3) and Afganistan (2/3).

Based on ROH analysis from the broader first pedigree and an additional family the authors concluded on a single shared region of homozygosity on chr 4q. Lack of ES data did not allow verification of whether 2/4 families shared the same haplotype with the other 2.

The authors calculated the probability of the genotype-phenotype cosegragation occurring by chance (0.009) and this was lower than the recommended criterion (0.06) for strong evidence of pathogenicity.

Shared features included abnormal tone in most (hypotonia 6/8, limb hypertonia 1/8), seizures (8/8 - onset 2d - 7m), severe DD with speech delay/absent speech (8/8), ID (8/8), strabismus (6/8).

UFSP2 encodes UFM1-specific protease 2 involved in UFmylation, a post-translational protein modification. As summarized by the authors the cysteine protease encoded by this gene (as is also the case for UFSP1) cleaves UFM1 in the initial step of UFMylation. Apart from producing mature UFM1, the 2 proteases have also the ability to release UFM1 from UFMylated proteins, in the process of de-UFMylation. [several refs. provided]

UFMylation is important in brain development with mutations in genes encoding other components of the pathway reported in other NDD disorders (incl. UFM1, UBA5, UFC1).

Additional studies were carried to provide evidence for pathogenicity of this variant.

Skin biopsies from 3 individuals were carried out to establish fibroblast cultures. Immunoblotting revealed reduced UFSP2 levels relative to controls. mRNA levels measured by qRT-PCR revealed no differences compared to controls altogether suggesting normal mRNA but reduced protein stability.

The authors demonstrated increased levels of UFM1-conjugated proteins (incl. DDRGK1, or TRIP4). Ectopic expression of wt UFSP2 normalized the levels of UFMylated proteins in the fibroblasts which was not the case for the V115E variant. Further the variant was difficult to detect by immunoblotting consistent with an effect on protein destabilization.

Although disruption of UFMylation induces ER stress, this was not shown to occur in patient fibroblast lines, when assessed for ER stress markers.

Evaluation of data from the GTEx project, concerning UFSP2 as well as well as DDRGK1 or TRIP4 - an UFMylation target - revealed relevant expression in multiple regions of the human brain.

Overall the authors provide evidence for defective de-UFMylation in patient fibroblasts (presence of increased UFMylation marks). The authors stress out that the effect of the variant in UFMylation in brain is unknown, as UFSP1 or other enzymes might compensate in the presence of hypomorphic UFSP2 mutants.

Biallelic UFSP2 variants have previously been reported in 2 skeletal dysplasias [# 142669. BEUKES HIP DYSPLASIA; BHD and # 617974. SPONDYLOEPIMETAPHYSEAL DYSPLASIA, DI ROCCO TYPE; SEMDDR]. These disorders are not characterized by neurological dysfunction or epilepsy. The authors underscore the fact that variants identified in these disorders (Y290H, D526A, H428R) localize within the C-terminal catalytic (peptidase) domain [aa 278 – 461] while the variant here identified lies in the N-terminal substrate binding domain affecting protein stability/abundance.

In OMIM, only the 2 aforementioned disorders are currently associated with biallelic UFSP2 mutations. There is no associated phenotype in G2P. SysID includes UFSP2 among the primary ID genes.

You may consider inclusion in the current panel with amber/green rating.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3775 CPE Zornitza Stark gene: CPE was added
gene: CPE was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: CPE was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CPE were set to 26120850; 32936766
Phenotypes for gene: CPE were set to Intellectual developmental disorder and hypogonadotropic hypogonadism, MIM# 619326
Review for gene: CPE was set to AMBER
Added comment: Four affected individuals from two unrelated families reported, bi-allelic LoF variants.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.3771 SMARCA5 Zornitza Stark gene: SMARCA5 was added
gene: SMARCA5 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SMARCA5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SMARCA5 were set to 33980485
Phenotypes for gene: SMARCA5 were set to Neurodevelopmental disorder; microcephaly; dysmorphic features
Review for gene: SMARCA5 was set to GREEN
Added comment: 12 individuals reported with either de novo or appropriately segregating variants in this gene and mild developmental delay, frequent postnatal short stature and microcephaly, and recurrent dysmorphic features. Functional data supports gene-disease association.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3753 TMEM222 Konstantinos Varvagiannis gene: TMEM222 was added
gene: TMEM222 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TMEM222 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMEM222 were set to 33824500
Phenotypes for gene: TMEM222 were set to Motor delay; Delayed speech and language development; Intellectual disability; Generalized hypotonia; Broad-based gait; Abnormality of nervous system morphology; Seizures; Microcephaly; Behavioral abnormality
Penetrance for gene: TMEM222 were set to Complete
Review for gene: TMEM222 was set to GREEN
Added comment: Polla et al (2021 - PMID: 33824500) report 17 individuals from 9 unrelated families, with biallelic TMEM222 pathogenic variants.

The phenotype included motor, speech delay and moderate to severe ID (as universal features). Other manifestations included hypotonia (10/15), broad gait (5/12), seizures (7/17 - belonging to 6/9 families), MRI abnormalities (5/8). Variable behavioral abnormalities were observed (aggressive behavior, shy character, stereotypic movements etc). Abnormal OFC was a feature in several with microcephaly in 7 subjects from 4 families (measurements not available for all 17). Nonspecific facial features were reported in 10/17. Rare features incl. body tremors, decreased lower extremity muscle mass or disorder of motor neurons.

TMEM222 variants were identified following exome sequencing. Previous investigations incl. metabolic studies, FMR1, chromosomes by standard karyotype or CMA, SMA, CMT1A were reported to be normal (available for some individuals).

TMEM222 variants missense and pLoF ones mostly found in homozygosity (7/9 families were consanguineous, compound heterozygosity reported in a single case from the 9 families). Sanger sequencing was used for confirmation of variants, parental carrier state as well as testing of sibs (unaffected sibs tested in 4 families).

Few individuals had additional genetic findings in other genes, though classified as VUS (3 families).

The gene encodes transmembrane protein 222 (208 residues) which however has unknown function. The protein comprises 3 transmembrane domains and a domain of unknown function. TMEMs are a group of transmembrane proteins spanning membranes with - most commonly - unclear function.

The authors measured expression by qPCR mRNA analysis, demonstrating highest fetal and adult brain expression (incl. parietal and occipital cortex). Expression levels from GTEx data also support a role in neurodevelopment.

Immunocytochemistry revealed highest levels in mature human iPSC-derived glutaminergic cortical neurons and moderate in immature ones. Additional studies supported that the gene is highly expressed in dendrites and might play a role in postsynaptic vesicles (colocalization with postsynaptic and early endosomal markers).

A previous study by Riazuddin et al (2017 - PMID: 27457812) had identified TMEM222 as a candidate gene for ID. This family (PKMR213) however appears to be included as family 2 in the aforementioned publication (same pedigree, variant and phenotype in both articles).

In OMIM there is currently no associated phenotype.

The gene is listed among the primary ID genes in SysID.

Please consider inclusion in the ID panel with green (or amber) rating. This gene may also be included in other panels e.g. for epilepsy, microcephaly, etc.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3752 CHD5 Zornitza Stark gene: CHD5 was added
gene: CHD5 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CHD5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CHD5 were set to 33944996
Phenotypes for gene: CHD5 were set to Intellectual disability; Epilepsy
Review for gene: CHD5 was set to GREEN
Added comment: 16 unrelated individuals reported with language deficits (81%), behavioral symptoms (69%), intellectual disability (64%), epilepsy (62%), and motor delay (56%).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3747 FBXO31 Zornitza Stark edited their review of gene: FBXO31: Added comment: PMIDs 33675180; 32989326: three unrelated individuals with de novo missense variant, (p.Asp334Asn) and spastic-dystonic CP, including ID.; Changed rating: GREEN; Changed publications: 24623383, 33675180, 32989326; Changed phenotypes: Mental retardation, autosomal recessive 45, MIM#615979, Spastic-dystonic cerebral palsy, de novo dominant; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.3746 DPYSL5 Zornitza Stark gene: DPYSL5 was added
gene: DPYSL5 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: DPYSL5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DPYSL5 were set to 33894126
Phenotypes for gene: DPYSL5 were set to Neurodevelopmental disorder with corpus callosum agenesis and cerebellar abnormalities
Review for gene: DPYSL5 was set to GREEN
Added comment: Nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intellectual disability. The recurrent de novo p.Glu41Lys was found in eight unrelated patients, and a p.Gly47Arg variant was identified in one individual from the first family reported with Ritscher-Schinzel syndrome. Both impaired DPYSL5 function on dendritic outgrowth regulation by preventing the formation of the ternary complex with MAP2 and βIII-tubulin, ultimately leading to abnormal brain development.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3741 VPS41 Zornitza Stark edited their review of gene: VPS41: Added comment: Another 9 individuals from 5 unrelated families reported.

Affected individuals were born after uneventful pregnancies and presented in most cases early in life with developmental delay. Various degrees of ataxia, hypotonia, and dystonia were present in all affected individuals, preventing independent ambulation. Likewise, nystagmus was commonly described. In addition, all affected individuals displayed intellectual disability and speech delay, and one sib pair had treatment-resistant epilepsy.; Changed rating: GREEN; Changed publications: 32808683, 33764426
Intellectual disability syndromic and non-syndromic v0.3738 PTPN4 Bryony Thompson gene: PTPN4 was added
gene: PTPN4 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PTPN4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PTPN4 were set to 17953619; 25424712; 30238967; DOI: https://doi.org/10.1016/j.xhgg.2021.100033
Phenotypes for gene: PTPN4 were set to Intellectual disability; developmental delay
Review for gene: PTPN4 was set to GREEN
Added comment: >3 unrelated probands and supporting mouse model
PMID: 17953619 - knockout mouse model has impaired motor learning and cerebellar synaptic plasticity
PMID: 25424712 - twins with a de novo whole gene deletion and a Rett-like neurodevelopmental disorder
PMID: 30238967 - mosaic de novo variant (p.Leu72Ser) identified in a child with developmental delay, autistic features, hypotonia, increased immunoglobulin E and dental problems. Also supporting mouse assays demonstrating loss of protein expression in dendritic spines
DOI: https://doi.org/10.1016/j.xhgg.2021.100033 - missense and truncating variants in six unrelated individuals with varying degrees of intellectual disability or developmental delay. 5 were able to undergo segregation analysis and found to be de novo.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3730 MED25 Zornitza Stark changed review comment from: Basel-Vanagaite-Smirin-Yosef syndrome is an autosomal recessive multiple congenital anomaly disorder characterized by severely delayed psychomotor development resulting in mental retardation, as well as variable eye, brain, cardiac, and palatal abnormalities. 7 individuals from 4 families reported initially, founder variant p.Tyr39Cys. Over 20 individuals reported since, including other variants.; to: Basel-Vanagaite-Smirin-Yosef syndrome is an autosomal recessive multiple congenital anomaly disorder characterized by severely delayed psychomotor development resulting in intellectual disability, as well as variable eye, brain, cardiac, and palatal abnormalities. 7 individuals from 4 families reported initially, founder variant p.Tyr39Cys. Over 20 individuals reported since, including other variants.
Intellectual disability syndromic and non-syndromic v0.3717 KCNJ6 Zornitza Stark changed review comment from: Keppen-Lubinsky syndrome characterised by severely delayed psychomotor development, hypertonia, hyperreflexia, generalized lipodystrophy giving an aged appearance, and distinctive dysmorphic features, including microcephaly, prominent eyes, narrow nasal bridge, and open mouth.

Three unrelated individuals reported with de novo variants in this gene (one recurred in 2), mouse model.; to: Keppen-Lubinsky syndrome characterised by severely delayed psychomotor development, hypertonia, hyperreflexia, generalized lipodystrophy giving an aged appearance, and distinctive dysmorphic features, including microcephaly, prominent eyes, narrow nasal bridge, and open mouth.

Four unrelated individuals reported with de novo variants in this gene (one recurred in 2), mouse model. One of the individuals did not have lipodystrophy but had a prominent hyperkinetic movement disorder.
Intellectual disability syndromic and non-syndromic v0.3713 AFF4 Zornitza Stark changed review comment from: Comment when marking as ready: At least 15 unrelated individuals reported.; to: Comment when marking as ready: At least 15 unrelated individuals reported.

CdL-like, clinically recognisable phenotype, characterised by cognitive impairment, coarse facies, heart defects, obesity, pulmonary involvement, short stature, and skeletal dysplasia.
Intellectual disability syndromic and non-syndromic v0.3713 AFF4 Zornitza Stark Added comment: Comment when marking as ready: At least 15 unrelated individuals reported.
Intellectual disability syndromic and non-syndromic v0.3700 NEUROD2 Zornitza Stark gene: NEUROD2 was added
gene: NEUROD2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: NEUROD2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: NEUROD2 were set to 33438828; 30323019
Phenotypes for gene: NEUROD2 were set to Epileptic encephalopathy, early infantile, 72, MIM# 618374
Review for gene: NEUROD2 was set to GREEN
Added comment: Four unrelated individuals altogether with de novo variants in this gene, two presenting predominantly with seizures, and two with ID.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3681 EMC10 Zornitza Stark changed review comment from: Additional 12 individuals from 7 Middle Eastern families reported. Same variant in all, suggestive of founder effect.; to: Additional 12 individuals from 7 Middle Eastern families reported. Same variant in all, suggestive of founder effect (but different to the previously reported family).
Intellectual disability syndromic and non-syndromic v0.3679 PLCH1 Zornitza Stark gene: PLCH1 was added
gene: PLCH1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PLCH1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PLCH1 were set to 33820834
Phenotypes for gene: PLCH1 were set to Holoprosencephaly spectrum; Severe developmental delay; Brain malformations
Review for gene: PLCH1 was set to AMBER
Added comment: PMID: 33820834 (2021) - Two sibling pairs from two unrelated families with a holoprosencephaly spectrum phenotype and different homozygous PLCH1 variants (c.2065C>T, p.Arg689* and c.4235delA, p.Cys1079ValfsTer16, respectively). One family presented with congenital hydrocephalus, epilepsy, significant developmental delay and a monoventricle or fused thalami; while sibs from the second family had alobar holoprosencephaly and cyclopia. 3/4 individuals also displayed a cleft palate and congenital heart disease. Human embryo immunohistochemistry showed PLCH1 to be expressed in the notorcord, developing spinal cord (in a ventral to dorsal gradient), dorsal root ganglia, cerebellum and dermatomyosome.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3664 MAPKAPK5 Chirag Patel gene: MAPKAPK5 was added
gene: MAPKAPK5 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: MAPKAPK5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MAPKAPK5 were set to PMID: 3344202
Phenotypes for gene: MAPKAPK5 were set to Developmental delay, variable brain anomalies, congenital heart defects, dysmorphic
Review for gene: MAPKAPK5 was set to GREEN
Added comment: 3 individuals from 2 families with severe developmental delay, variable brain anomalies, congenital heart defects, dysmorphic facial features, and a distinctive type of synpolydactyly with an additional hypoplastic digit between the fourth and fifth digits of hands and/or feet. Exome sequencing identified different homozygous truncating variants in MAPKAPK5 in both families, segregating with disease and unaffected parents as carriers.

Patient-derived cells showed no expression of MAPKAPK5 protein isoforms and reduced levels of the MAPKAPK5-interacting protein ERK3. F-actin recovery after latrunculin B treatment was found to be less efficient in patient-derived fibroblasts than in control cells, supporting a role of MAPKAPK5 in F-actin polymerization.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3662 UBE4A Chirag Patel gene: UBE4A was added
gene: UBE4A was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: UBE4A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UBE4A were set to PMID: 33420346
Phenotypes for gene: UBE4A were set to Intellectual disability and global developmental delay
Review for gene: UBE4A was set to GREEN
Added comment: 8 individuals, from 4 unrelated families, with syndromic intellectual disability and global developmental delay (other clinical features included hypotonia, short stature, seizures, and behaviour disorder. Exome sequencing identified biallelic loss-of-function variants in UBE4A in the 4 families, with variants segregating with disease and parents carriers. They demonstrated that UBE4A loss-of-function variants reduced RNA expression and protein levels in clinical samples. Mice generated to mimic patient-specific Ube4a loss-of-function variant exhibited muscular and neurological/behavioural abnormalities, some of which are suggestive of the clinical abnormalities seen in the affected individuals.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3604 NMNAT1 Zornitza Stark gene: NMNAT1 was added
gene: NMNAT1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
SV/CNV, founder tags were added to gene: NMNAT1.
Mode of inheritance for gene: NMNAT1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NMNAT1 were set to 32533184; 33668384
Phenotypes for gene: NMNAT1 were set to Spondyloepiphyseal dysplasia, sensorineural hearing loss, intellectual disability, and Leber congenital amaurosis (SHILCA), MIM#619260; Leber congenital amaurosis 9, MIM# 608553
Review for gene: NMNAT1 was set to AMBER
Added comment: Three families reported, but two are distantly related (shared haplotype). The affected children in those two families were homozygous for 7.4-kb duplication involving the last 2 exons of the NMNAT1 gene, spanning the beginning of intron 3 to the middle of the 3-prime UTR (chr1:10,036,359-10,043,727, GRCh37). The third affected individual was compound het for the duplication and a splicing variant.

Note bi-allelic variants in this gene are associated with non-syndromic LCA, multiple families.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3538 SATB1 Zornitza Stark edited their review of gene: SATB1: Added comment: Kohlschutter-Tonz syndrome-like (KTZSL) is characterized by global developmental delay with moderately to severely impaired intellectual development, poor or absent speech, and delayed motor skills. Although the severity of the disorder varies, many patients are nonverbal and have hypotonia with inability to sit or walk. Early-onset epilepsy is common and may be refractory to treatment, leading to epileptic encephalopathy and further interruption of developmental progress. Most patients have feeding difficulties with poor overall growth and dysmorphic facial features, as well as significant dental anomalies resembling amelogenesis imperfecta. This phenotype was reported in 28 patients (patients 13 to 40, PMID 33513338), including 9 patients from 3 families. Most variants were de novo, though some were inherited, suggestive of incomplete penetrance and variable expressivity.

Developmental delay with dysmorphic facies and dental anomalies (DEFDA) is characterized by generally mild global developmental delay with variably impaired intellectual development, walking by 2 to 3 years, and slow language acquisition. The severity of the disorder ranges from moderate cognitive deficits to mild learning difficulties or behavioral abnormalities. Most patients have dysmorphic facial features, often with abnormal dentition and nonspecific visual defects, such as myopia, astigmatism, and strabismus. Although rare, involvement of other systems, such as skeletal, cardiac, and gastrointestinal, may be present. 12 individuals from 11 families reported (one inherited variant, affected parent).; Changed phenotypes: Kohlschutter-Tonz syndrome-like, MIM# 619229, Developmental delay with dysmorphic facies and dental anomalies, MIM# 619228, Developmental disorders
Intellectual disability syndromic and non-syndromic v0.3526 TPP2 Zornitza Stark gene: TPP2 was added
gene: TPP2 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: TPP2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TPP2 were set to 25525876; 25414442; 33586135; 18362329
Phenotypes for gene: TPP2 were set to Immunodeficiency 78 with autoimmunity and developmental delay, MIM# 619220
Review for gene: TPP2 was set to GREEN
Added comment: Immunodeficiency-78 with autoimmunity and developmental delay (IMD78) is an autosomal recessive systemic disorder characterized by onset of symptoms in early childhood. Affected individuals present with features of immune deficiency, such as recurrent sinopulmonary or skin infections, as well as autoimmunity, including autoimmune cytopenias, hemolytic anemia, and thrombocytopenia. Autoimmune hepatitis or thyroid disease and central nervous system vasculitis with stroke may also occur. There is increased susceptibility to bacterial, viral, and fungal infections. Laboratory studies show lymphopenia with advanced differentiation and premature senescence of CD8+ T cells and B cells; some patients may have hypergammaglobulinemia. The findings indicate immune dysregulation. Patients also have global developmental delay with speech delay and variable intellectual disability. Five unrelated families and a mouse model.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.3482 SIAH1 Zornitza Stark gene: SIAH1 was added
gene: SIAH1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SIAH1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SIAH1 were set to 32430360
Phenotypes for gene: SIAH1 were set to Developmental delay; Infantile hypotonia; Dysmorphic features; Laryngomalacia
Review for gene: SIAH1 was set to GREEN
Added comment: - PMID: 32430360 (2021) - Five unrelated individuals with shared features of developmental delay, infantile hypotonia, dysmorphic features and laryngomalacia. All had speech delay and where cognitive assessment was age appropriate individuals exhibited learning difficulties. Trio WES revealed distinct de novo variants in SIAH1. In vitro assays demonstrated that SIAH1 mutants induce loss of Wnt stimulatory activity.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3474 EIF5A Zornitza Stark gene: EIF5A was added
gene: EIF5A was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: EIF5A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: EIF5A were set to 33547280
Phenotypes for gene: EIF5A were set to Intellectual disability; microcephaly; dysmorphism
Review for gene: EIF5A was set to GREEN
Added comment: 7 unrelated individuals reported with de novo variants in this gene and variable combinations of developmental delay, microcephaly, micrognathia and dysmorphism.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3472 POLRMT Zornitza Stark gene: POLRMT was added
gene: POLRMT was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: POLRMT was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: POLRMT were set to 33602924
Phenotypes for gene: POLRMT were set to Mitochondrial disorder; intellectual disability; hypotonia
Review for gene: POLRMT was set to GREEN
Added comment: 8 individuals from 7 families reported. 5 families with bi-allelic variants and 2 with heterozygous variants. Affected individuals presented with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3452 MSL3 Zornitza Stark commented on gene: MSL3: Well established ID gene. 2021 paper documents findings in 25 individuals. Variants found to be clustering in the terminal eight exons suggesting that truncating variants in the first five exons might be compensated by an alternative MSL3 transcript. Three-dimensional modeling of missense and splice variants indicated that these have a deleterious effect. The main clinical findings comprised developmental delay and intellectual disability ranging from mild to severe. Autism spectrum disorder, muscle tone abnormalities, and macrocephaly were common as well as hearing impairment and gastrointestinal problems. Hypoplasia of the cerebellar vermis emerged as a consistent magnetic resonance image (MRI) finding.
Intellectual disability syndromic and non-syndromic v0.3427 PIGF Paul De Fazio gene: PIGF was added
gene: PIGF was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PIGF was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PIGF were set to 33386993
Phenotypes for gene: PIGF were set to Glycosylphosphatidylinositol deficiency, onychodystrophy, osteodystrophy, intellectual disability, and seizures
Review for gene: PIGF was set to RED
gene: PIGF was marked as current diagnostic
Added comment: The same homozygous missense variant identified in 2 individuals from different families from the same region of India. Individuals had a phenotype similar to DOORS syndrome without deafness. Impaired glycosylphosphatidylinositol (GPI) biosynthesis was demonstrated.

Rated Red as the two families are likely to be related (founder mutation?).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3426 HIRA Paul De Fazio gene: HIRA was added
gene: HIRA was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: HIRA was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: HIRA were set to 33417013; 28135719; 25363760
Phenotypes for gene: HIRA were set to Neurodevelopmental disorder
Review for gene: HIRA was set to GREEN
gene: HIRA was marked as current diagnostic
Added comment: Two unrelated patients with different de novo loss of function variants identified in PMID 33417013:

Individual 1: intragenic deletion, phenotype included psychomotor retardation, ID, growth retardation, microcephaly, and facial features reminiscent of 22q deletion syndrome.
Individual 2: canonical splice variant, phenotype mostly confined to ASD

Another two de novo variants were identified in the literature by the authors of that paper, one stop-gain (DDD study, PMID 28135719) and one missense (large autism cohort, PMID 25363760).

PMID 33417013 also showed that HIRA knockdown in mice results in neurodevelopmental abnormalities.

Rated Green due to 4 unrelated individuals (albeit 2 in large cohort studies) and a mouse model. NB: HIRA is within the common 22q deletion region.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3420 OTUD5 Chirag Patel gene: OTUD5 was added
gene: OTUD5 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: OTUD5 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: OTUD5 were set to PMID: 33131077
Phenotypes for gene: OTUD5 were set to X-linked severe neurodevelopmental delay, hydrocephalus, and early lethality
Review for gene: OTUD5 was set to RED
Added comment: 13 male patients from a single family with three generations affected. Patients presented prenatally or during the neonatal period with IUGR, ventriculomegaly, hydrocephalus, hypotonia, congenital heart defects, hypospadias, and severe neurodevelopmental delay. The disease is typically fatal during infancy, mainly due to sepsis (pneumonias). Female carriers are asymptomatic. WGS in four individuals identified a unique candidate variant in the OTUD5 gene (NM_017602.3:c.598G > A, p.Glu200Lys). The variant cosegregated with the disease in 10 tested individuals. No functional studies.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3384 SCAMP5 Zornitza Stark edited their review of gene: SCAMP5: Added comment: PMID 33390987: Four unrelated individuals reported with same de novo missense variant, p. Gly180Trp. The onset age of seizures was ranged from 6 to 15 months. Patients had different types of seizures, including focal seizures, generalized tonic-clonic seizures and tonic seizure. One patient showed typical autism spectrum disorder (ASD) symptoms. Electroencephalogram (EEG) findings presented as focal or multifocal discharges, sometimes spreading to generalization. Brain magnetic resonance imaging (MRI) abnormalities were present in each patient. Severe intellectual disability and language and motor developmental disorders were found in our patients, with all patients having poor language development and were nonverbal at last follow-up. All but one of the patients could walk independently in childhood, but the ability to walk independently in one patient had deteriorated with age. All patients had abnormal neurological exam findings, mostly signs of extrapyramidal system involvement. Dysmorphic features were found in 2/4 patients, mainly in the face and trunk.; Changed rating: GREEN; Changed publications: 33390987; Changed phenotypes: Intellectual disability, seizures, autism; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Intellectual disability syndromic and non-syndromic v0.3383 ZNF526 Zornitza Stark gene: ZNF526 was added
gene: ZNF526 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ZNF526 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZNF526 were set to 21937992; 25558065; 33397746
Phenotypes for gene: ZNF526 were set to Intellectual disability; Microcephaly; Cataracts; Epilepsy; Hypertonia; Dystonia
Review for gene: ZNF526 was set to GREEN
Added comment: Currently not associated with any phenotype in OMIM (last updated on 09/12/2011), but has a 'possible' disease confidence rating for 'Autosomal Recessive Mental Retardation' in Gene2Phenotype.

- PMID: 21937992 (2011) - Two unrelated families (with 4 affected individuals in each) with non-syndromic ID (mild or moderate, respectively) identified harbouring different biallelic missense variants in the ZNF526 gene.

- PMID: 25558065 (2015) - One family with ID, Noonan-like facies, pulmonary stenosis and a homozygous missense variant in this gene. No further details provided.

- PMID: 33397746 (2021) - Five individuals from four unrelated families with homozygous ZNF526 variants. Four harboured truncating variants, and were all affected by profound DD and severe ID, microcephaly (ranging from -4 SD to -8 SD), bilateral progressive cataracts, hypertonic-dystonic movements, epilepsy and brain MRI anomalies. The fifth patient had a homozygous missense variant and a slightly less severe disorder, with postnatal microcephaly (-2 SD), progressive bilateral cataracts, severe ID, and normal brain MRI. Zebrafish model demonstrated brain and eye malformations resembling findings seen in the human holoprosencephaly spectrum
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3380 CELF2 Zornitza Stark gene: CELF2 was added
gene: CELF2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CELF2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CELF2 were set to 33131106
Phenotypes for gene: CELF2 were set to Developmental and epileptic encephalopathy
Review for gene: CELF2 was set to GREEN
Added comment: Five unrelated individuals reported. Four with de novo variants, and one inherited from a mosaic mother. Notably, all identified variants, except for c.272‐1G>C, were clustered within 20 amino acid residues of the C‐terminus, which might be a nuclear localization signal.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3376 UBR7 Zornitza Stark gene: UBR7 was added
gene: UBR7 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: UBR7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UBR7 were set to 33340455
Phenotypes for gene: UBR7 were set to Intellectual disability; epilepsy; hypothyroidism; congenital anomalies; dysmorphic features
Review for gene: UBR7 was set to GREEN
Added comment: Seven individuals from 6 unrelated families. All had developmental delay, and all males had urogenital anomalies, namely cryptorchidism in 5/6 and small penis in 1/6. Six individuals had seizures and hypotonia. Hypothyroidism was present in 4/7 individuals, and ptosis was noted in 6/7 individuals. Five individuals exhibited cardiac abnormalities: two had ventricular septal defect, one had atrial septal defect, one had a patent ductus arteriosus requiring surgery, and the other had a patent ductus arteriosus and a patent foramen ovale that both closed spontaneously. Five individuals had short stature (height < 3rd percentile). Physical examination revealed various dysmorphic features, including prominent forehead (3/7), hypertelorism (4/7), telecanthus (1/7), epicanthus(1/7), downslanting palpebral fissures (3/7), thick eyebrow (1/7), low-set ears (3/7), long philtrum (2/7), unilateral single transverse palmar crease (1/7), and hypertrichosis (1/7).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3368 RNU7-1 Paul De Fazio gene: RNU7-1 was added
gene: RNU7-1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: RNU7-1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RNU7-1 were set to 33230297
Phenotypes for gene: RNU7-1 were set to Aicardi–Goutières syndrome-like
Review for gene: RNU7-1 was set to GREEN
gene: RNU7-1 was marked as current diagnostic
Added comment: Review originally submitted by Ming Wong
- 16 affected individuals from 11 families
- Compared to control fibroblasts, patient fibroblasts were enriched for misprocessed forms of
replication-dependent histone (RDH) mRNAs
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3273 PPIL1 Zornitza Stark gene: PPIL1 was added
gene: PPIL1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PPIL1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PPIL1 were set to 33220177
Phenotypes for gene: PPIL1 were set to Pontocerebellar hypoplasia; microcephaly; seizures
Review for gene: PPIL1 was set to GREEN
Added comment: 17 individuals from 9 unrelated families reported with bi-allelic variants in the gene and PCH, microcephaly, hypotonia, seizures, severe DD/ID. Mouse models support gene-disease association.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3270 FRA12A Bryony Thompson STR: FRA12A was added
STR: FRA12A was added to Intellectual disability syndromic and non-syndromic. Sources: Other
5'UTR tags were added to STR: FRA12A.
Mode of inheritance for STR: FRA12A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: FRA12A were set to 17236128
Phenotypes for STR: FRA12A were set to Mental retardation, FRA12A type MIM#136630
Review for STR: FRA12A was set to AMBER
Added comment: NM_173602.2:c.-137CGG[X]
All individuals expressing FRA12A had CGG-repeat expansion. The length of the expanded allele in 3 unaffected FRA12A carriers was 650–850 bp. In the two affected patients from 2 families with FRA12A, the length of the expanded allele was ∼1,050-1,150 bp.
70 controls used to determine the "normal" repeat range.
Sources: Other
Intellectual disability syndromic and non-syndromic v0.3265 RAP1B Zornitza Stark edited their review of gene: RAP1B: Added comment: Another individual with de novo missense variant from a Kabuki-like cohort but note facial gestalt was not typical, had DD.; Changed rating: GREEN; Changed publications: 32627184, 26280580
Intellectual disability syndromic and non-syndromic v0.3263 EMC10 Chirag Patel gene: EMC10 was added
gene: EMC10 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: EMC10 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EMC10 were set to PMID: 32869858
Phenotypes for gene: EMC10 were set to Developmental delay and intellectual disability, no OMIM#
Review for gene: EMC10 was set to RED
Added comment: Homozygous variants of EMC1 are associated with GDD, scoliosis, and cerebellar atrophy, indicating the relevance of this pathway for neurogenetic disorders.

One Saudi family with 2 affected individuals with mild ID, speech delay, and GDD.
WES and Sanger sequencing revealed a homozygous splice acceptor site variant (c.679‐1G>A) in EMC10 . Variant segregated within the family. RT‐qPCR showed a substantial decrease in the relative EMC10 gene expression in the patients.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3262 FBXO28 Zornitza Stark changed review comment from: Nine new individuals with FBXO28 pathogenic variants (four missense, including one recurrent, three nonsense, and one frameshift) and all 10 known cases reviewed to delineate the phenotypic spectrum. All patients had epilepsy and 9 of 10 had DEE, including infantile spasms (3) and a progressive myoclonic epilepsy (1). Median age at seizure onset was 22.5 months (range 8 months to 5 years). Nine of 10 patients had intellectual disability, which was profound in six of nine and severe in three of nine. Movement disorders occurred in eight of 10 patients, six of 10 had hypotonia, four of 10 had acquired microcephaly, and five of 10 had dysmorphic features.
Sources: Literature; to: Nine new individuals with FBXO28 pathogenic variants (four missense, including one recurrent, three nonsense, and one frameshift) and all 10 known cases reviewed to delineate the phenotypic spectrum. All had epilepsy and 9 of 10 had DEE, including infantile spasms (3) and a progressive myoclonic epilepsy (1). Median age at seizure onset was 22.5 months (range 8 months to 5 years). Nine of 10 patients had intellectual disability, which was profound in six of nine and severe in three of nine. Movement disorders occurred in eight of 10 patients, six of 10 had hypotonia, four of 10 had acquired microcephaly, and five of 10 had dysmorphic features.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3261 FBXO28 Zornitza Stark gene: FBXO28 was added
gene: FBXO28 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: FBXO28 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FBXO28 were set to 33280099
Phenotypes for gene: FBXO28 were set to Developmental and epileptic encephalopathy
Review for gene: FBXO28 was set to GREEN
Added comment: Nine new individuals with FBXO28 pathogenic variants (four missense, including one recurrent, three nonsense, and one frameshift) and all 10 known cases reviewed to delineate the phenotypic spectrum. All patients had epilepsy and 9 of 10 had DEE, including infantile spasms (3) and a progressive myoclonic epilepsy (1). Median age at seizure onset was 22.5 months (range 8 months to 5 years). Nine of 10 patients had intellectual disability, which was profound in six of nine and severe in three of nine. Movement disorders occurred in eight of 10 patients, six of 10 had hypotonia, four of 10 had acquired microcephaly, and five of 10 had dysmorphic features.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3251 VPS4A Elena Savva changed review comment from: Comment when marking as ready: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain. 1x homozygous missense in the MIT domain (milder phenotype and unaffected parents - possibly just a simple LoF mechanism for AR inheritance). Demonstrated defective CD71 trafficking in all 3 patients. PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly). Demonstrated that the variants had a dominant-negative effect on VPS4A function. "The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."; to: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain. 1x homozygous missense in the MIT domain (milder phenotype and unaffected parents - possibly just a simple LoF mechanism for AR inheritance). Demonstrated defective CD71 trafficking in all 3 patients.

PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly). Demonstrated that the variants had a dominant-negative effect on VPS4A function. "The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Intellectual disability syndromic and non-syndromic v0.3251 VPS4A Elena Savva Added comment: Comment when marking as ready: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain. 1x homozygous missense in the MIT domain (milder phenotype and unaffected parents - possibly just a simple LoF mechanism for AR inheritance). Demonstrated defective CD71 trafficking in all 3 patients. PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly). Demonstrated that the variants had a dominant-negative effect on VPS4A function. "The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Intellectual disability syndromic and non-syndromic v0.3250 VPS4A Kristin Rigbye gene: VPS4A was added
gene: VPS4A was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: VPS4A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: VPS4A were set to 33186543; 33186545
Phenotypes for gene: VPS4A were set to Neurodevelopmental disorder
Review for gene: VPS4A was set to GREEN
Added comment: PMID: 33186543 - 2x de novo hetorozygous missense variants in the AAA (large ATPase) domain.
1x homozygous missense in the MIT domain (milder phenotype and unaffected parents - possibly just a simple LoF mechanism for AR inheritance).
Demonstrated defective CD71 trafficking in all 3 patients.

PMID: 33186545 - 6x probands with de novo missense variants in the AAA domain. 5 of the variants were at amino acid position 284 (changes to Trp and Gly).
Demonstrated that the variants had a dominant-negative effect on VPS4A function.

"The six probands with de novo substitutions affecting Glu206 or Arg284 had a consistent phenotype characterized by severe DD, profound ID, and dystonia. Children were very delayed in establishing head control and none achieved independent walking. Other common findings were cerebellar hypoplasia (five individuals out of six, the other showing uncharacterized severe cerebral atrophy) with a variable degree of corpus callosum hypoplasia. One individual also had bilateral polymicrogyria. Epilepsy was present in three and dystonia in five subjects. Eye involvement was also a common finding, including congenital cataract, retinal dystrophy, and in one case congenital Leber amaurosis. Four individuals were diagnosed with hepatosplenomegaly and/or steatosis. Three subjects had anemia, which was characterized as dyserythropoietic in two. Severe feeding difficulties were present in four individuals, requiring assisted feeding in three. Two had sensorineural deafness. Severe growth retardation, generally for all parameters, was present in most cases. Notably, severe microcephaly (typically with Z scores < −5) was universal. Overall, the disorder seems to have a poor prognosis as two affected individuals died in childhood or early adult life."
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3248 BICRA Elena Savva Added comment: Comment when marking as ready: 12 individuals reported, 11 de novo (1 not resolved), "with neurodevelopmental phenotypes—developmental delay (HP:0001263), intellectual disability (HP:0001249), autism spectrum disorder (HP:0000729), and/or behavioral phenotypes (HP:0000708)—and variable structural birth defects and dysmorphic features". Mostly LoF or gene deletions, but 2 missense reported. Zebrafish model supports the gene-disease association.
Intellectual disability syndromic and non-syndromic v0.3248 KDM4B Kristin Rigbye gene: KDM4B was added
gene: KDM4B was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: KDM4B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KDM4B were set to PMID: 33232677
Phenotypes for gene: KDM4B were set to Global developmental delay, intellectual disability and neuroanatomical defects
Review for gene: KDM4B was set to GREEN
Added comment: Nine individuals with mono-allelic de novo or inherited variants in KDM4B.

All individuals presented with dysmorphic features and global developmental delay (GDD) with language and motor skills most affected. Three individuals had a history of seizures, and four had anomalies on brain imaging ranging from agenesis of the corpus callosum with hydrocephalus to cystic formations, abnormal hippocampi, and polymicrogyria.

In a knockout mouse the total brain volume was significantly reduced with decreased
size of the hippocampal dentate gyrus, partial agenesis of the corpus callosum, and ventriculomegaly.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3248 BICRA Paul De Fazio gene: BICRA was added
gene: BICRA was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: BICRA was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: BICRA were set to 33232675
Phenotypes for gene: BICRA were set to Developmental delay, intellectual disability, autism spectrum disorder,behavioral abnormalities, dysmorphic features
Review for gene: BICRA was set to GREEN
gene: BICRA was marked as current diagnostic
Added comment: 12 individuals reported, 11 de novo (1 not resolved), "with neurodevelopmental phenotypes—developmental delay (HP:0001263), intellectual disability (HP:0001249), autism spectrum disorder (HP:0000729), and/or behavioral phenotypes (HP:0000708)—and variable structural birth defects and dysmorphic features". Mostly LoF or gene deletions, but 2 missense reported. Zebrafish model supports the gene-disease association.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3246 AGO2 Zornitza Stark gene: AGO2 was added
gene: AGO2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: AGO2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: AGO2 were set to 33199684
Phenotypes for gene: AGO2 were set to Intellectual disability
Review for gene: AGO2 was set to GREEN
Added comment: 21 individuals reported, five variants (p.L192P, p.G201V, p.T357M, p.M364T, p.C751Y) were recurrent. Variable ID.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3240 H3F3B Zornitza Stark edited their review of gene: H3F3B: Added comment: 13 unrelated individuals reported with missense variants in H3F3B. Phenotype primarily comprised intellectual disability and minor congenital anomalies, regression in significant proportion. Seizures in 50%.; Changed rating: GREEN; Changed publications: 33268356; Changed phenotypes: Intellectual disability, regression, seizures; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Intellectual disability syndromic and non-syndromic v0.3236 H3F3A Zornitza Stark edited their review of gene: H3F3A: Added comment: 33 unrelated individuals reported with missense variants in H3F3A. Phenotype primarily comprised intellectual disability and minor congenital anomalies, regression in significant proportion. Seizures in 50%.; Changed rating: GREEN; Changed publications: 33268356; Changed phenotypes: Intellectual disability, regression, seizures; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Intellectual disability syndromic and non-syndromic v0.3217 DPM2 Zornitza Stark edited their review of gene: DPM2: Added comment: Further unrelated individual reported, main clinical features were truncal hypotonia, hypertonicity, congenital heart defects, intellectual disability, and generalized muscle wasting.; Changed rating: GREEN; Changed publications: 23109149, 33129689
Intellectual disability syndromic and non-syndromic v0.3173 ZFHX4 Zornitza Stark gene: ZFHX4 was added
gene: ZFHX4 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ZFHX4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ZFHX4 were set to 33057194; 24038936; 21802062
Phenotypes for gene: ZFHX4 were set to Developmental disorders; intellectual disability, dysmorphic features
Review for gene: ZFHX4 was set to GREEN
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio study from the Deciphering Developmental Disorders study. 16 de novo variants (5 frameshift, 5 missense, 4 stopgain, 2 synonymous) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
PMID: 24038936 - a single case with developmental delay, macrocephaly, ventriculomegaly, hypermetropia, recurrent infections, dysmorphism and a de novo deletion of the last 7 exons of the gene.
PMID:21802062 (2011) report 8 individuals with ID and overlapping deletions of 8q21.11 (0.66-13.55 Mb in size); the smallest region of overlap encompasses 3 genes including ZFHX4.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3143 ATP6V0A1 Zornitza Stark gene: ATP6V0A1 was added
gene: ATP6V0A1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ATP6V0A1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ATP6V0A1 were set to 30842224; 33057194
Phenotypes for gene: ATP6V0A1 were set to Developmental disorder; Rett syndrome-like
Review for gene: ATP6V0A1 was set to AMBER
Added comment: PMID: 33057194 - Has been identified as a gene with significant de novo enrichment in a large trio developmental disorder study. 11 de novo missense identified in ~10,000 cases with developmental disorders (no other phenotype info provided, hence Amber rating).
PMID: 30842224 - identified a de novo missense variant in a single individual with atypical Rett syndrome phenotype
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3139 FOXP4 Zornitza Stark changed review comment from: Eight unrelated individuals reported, seven de novo missense, and one individual with a truncating variant. Detailed phenotypic information available on 6. Overlapping features included speech and language delays, growth abnormalities, congenital diaphragmatic hernia (2/6), cervical spine abnormalities, and ptosis. Intellectual disability described as mild in 2, some had normal intellect despite the early challenges.
Sources: Literature; to: Eight unrelated individuals reported, seven de novo missense, and one individual with a truncating variant. Detailed phenotypic information available on 6. Overlapping features included speech and language delays, growth abnormalities, congenital diaphragmatic hernia (2/6), cervical spine abnormalities, and ptosis. Intellectual disability described as mild in 2, some had normal intellect despite the early speech and language delays.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3139 FOXP4 Zornitza Stark changed review comment from: Six unrelated individuals reported, 5 with missense variants in the forkhead box DNA-binding domain of FOXP4, and one individual with a truncating variant. Overlapping features included speech and language delays, growth abnormalities, congenital diaphragmatic hernia, cervical spine abnormalities, and ptosis.
Sources: Literature; to: Eight unrelated individuals reported, seven de novo missense, and one individual with a truncating variant. Detailed phenotypic information available on 6. Overlapping features included speech and language delays, growth abnormalities, congenital diaphragmatic hernia (2/6), cervical spine abnormalities, and ptosis. Intellectual disability described as mild in 2, some had normal intellect despite the early challenges.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3139 FOXP4 Zornitza Stark gene: FOXP4 was added
gene: FOXP4 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: FOXP4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FOXP4 were set to 33110267
Phenotypes for gene: FOXP4 were set to Neurodevelopmental disorder; multiple congenital abnormalities
Review for gene: FOXP4 was set to GREEN
Added comment: Six unrelated individuals reported, 5 with missense variants in the forkhead box DNA-binding domain of FOXP4, and one individual with a truncating variant. Overlapping features included speech and language delays, growth abnormalities, congenital diaphragmatic hernia, cervical spine abnormalities, and ptosis.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3128 PRKAR1B Konstantinos Varvagiannis gene: PRKAR1B was added
gene: PRKAR1B was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PRKAR1B was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PRKAR1B were set to https://doi.org/10.1101/2020.09.10.20190314; 33057194
Phenotypes for gene: PRKAR1B were set to Global developmental delay; Intellectual disability; Autism; Attention deficit hyperactivity disorder; Aggressive behavior; Abnormality of movement; Upslanted palpebral fissure
Penetrance for gene: PRKAR1B were set to unknown
Review for gene: PRKAR1B was set to AMBER
Added comment: Please consider inclusion of this gene with amber rating pending publication of the preprint and/or additional evidence.

Marbach et al. (2020 - medRxiv : https://doi.org/10.1101/2020.09.10.20190314 - last author : C. Schaaf) report 6 unrelated individuals with heterozygous missense PRKAR1B variants.

All presented formal ASD diagnosis (6/6), global developmental delay (6/6) and intellectual disability (all - formal evaluations were lacking though). Additional features included neurologic anomalies (movement disorders : dyspraxia, apraxia, clumsiness in all, with tremor/dystonia or involuntary movements as single occurrences). Three displayed high pain tolerance. Regression in speech was a feature in two. Additional behavior anomalies included ADHD (4-5/6) or aggression (3/6). There was no consistent pattern of malformations, physical anomalies or facial features (with the exception of uplsanted palpebral fissures reported in 4).

3 different missense variants were identified (NM_00116470:c.1003C>T - p.Arg335Trp, c.586G>A - p.Glu196Lys, c.500_501delAAinsTT - p.Gln167Leu) with Arg355Trp being a recurrent one within this cohort (4/6 subjects). A possible splicing effect may apply for the MNV. All variants are absent from gnomAD and the SNVs had CADD scores > 24.

In all cases were parental samples were available (5/6), the variant had occurred as a de novo event.

Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes. As the authors comment, the RIβ subunit is primarily expressed in brain with higher expression in cortex and hypothalamus.

The functional consequences of the variants at cellular level were not studied.

Previous studies have demonstrated that downregulation of RIβ in murine hippocampal cultures, reduced phosphorylation of CREB, a transcription factor involved in long-term memory formation. The authors speculate that a similar effect on cAMP/PKA/CREB cascade may mediate the cognitive effects in humans. RIβ deficient mice also display diminished nociceptive pain, similar to the human phenotype. [Several refs provided].

The authors cite the study by Kaplanis et al (2020 - PMID: 33057194), where in a large sample of 31,058 trio exomes of children with developmental disorders, PRKAR1B was among the genes with significant enrichment for de novo missense variants. [The gene has a pLI score of 0.18 in gnomAD / o/e = 0.26 - so pLoF variants may not be deleterious].

Please note that a specific PRKAR1B variant (NM_002735.2:c.149T>G - p.Leu50Arg) has been previous reported to segregate with a late-onset neurodegenerative disorder characterized by dementia and/or parkinsonism within a large pedigree with 12 affected individuals [Wong et al 2014 - PMID: 25414040].
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3127 MPP5 Konstantinos Varvagiannis gene: MPP5 was added
gene: MPP5 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: MPP5 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: MPP5 were set to 33073849
Phenotypes for gene: MPP5 were set to Global developmental delay; Intellectual disability; Delayed speech and language development; Developmental regression; Behavioral abnormality
Penetrance for gene: MPP5 were set to unknown
Review for gene: MPP5 was set to GREEN
Added comment: Sterling et al (2020 - PMID: 33073849) provide information on the phenotype of 3 individuals with de novo MPP5 variants.

Common features included global developmental delay, intellectual disability (3/3 - severe in 2/3), speech delay/regression (the latter in at least 2) and behavioral abnormalities. Variable other features were reported, among others microcephaly (1/3), abnormal vision (1/3 : CVI, retinal dystrophy, nystagmus), brain MRI abnormalities (2/3), late-onset seizures (1/3). These subjects displayed variable and non-specific dysmorphic features.

All were investigated by exome sequencing (previous investigations not mentioned).

One subject was found to harbor a de novo mosaic (5/25 reads) stopgain variant, further confirmed by Sanger sequencing [NM_022474.4:c.1555C>T - p.(Arg519Ter). The specific variant is reported once in gnomAD (1/251338). Two de novo missense variants were identified in the remaining individuals [c.1289A>G - p.Glu430Gly / c.974A>C - p.His325Pro). All variants had in silico predictions in favor of a deleterious effect (CADD score >24).

The authors comment that MPP5 encodes an apical complex protein with asymmetric localization to the apical side of polarized cells. It is expressed in brain, peripheral nervous system and other tissues. MPP5 is a member of the membrane-associated guanylate kinase family of proteins (MAGUK p55 subfamily), determining cell polarity at tight junctions.

Previous animal models suggest that complete Mpp5(Pals1) KO in mice leads to near absence of cerebral cortical neurons. Htz KO display reduction in size of cerebral cortex and hippocampus. The gene is expressed in proliferating cell populations of cerebellum and important for establishment cerebellar architecture. Conditional KO of Mpp5(Pals1) in retinal progenitor cells mimics the retinal pathology observed in LCA. [Several refs. provided]

The authors studied a heterozygous CNS-specific Mpp5 KO mouse model. These mice presented microcephaly, decreased cerebellar volume and cortical thickness, decreased ependymal cells and Mpp5 at the apical surface of cortical vertrical zone. The proportion of cortical cells undergoing apoptotic cell death was increased. Mice displayed behavioral abnormalities (hyperactivity) and visual deficits, with ERG traces further suggesting retinal blindness.

Overall the mouse model was thought to recapitulate the behavioral abnormalities observed in affected subjects as well as individual rare features such as microcephaly and abnormal vision.

Haploinsufficiency (rather than a dominant negative effect) is favored as the underlying disease mechanism. This is also in line with a dose dependent effect observed in mice.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3126 ODC1 Zornitza Stark edited their review of gene: ODC1: Added comment: Fifth individual reported in PMID 30239107: de novo nonsense variant identified, molecular modeling suggested that due to lack of a C terminus in the mutant protein, antizyme binding does not induce ODC degradation, leading to accumulation of active protein.; Changed publications: 30475435, 30239107
Intellectual disability syndromic and non-syndromic v0.3102 PRKACB Konstantinos Varvagiannis gene: PRKACB was added
gene: PRKACB was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PRKACB was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: PRKACB were set to 33058759
Phenotypes for gene: PRKACB were set to Postaxial hand polydactyly; Postaxial foot polydactyly; Common atrium; Atrioventricular canal defect; Narrow chest; Abnormality of the teeth; Intellectual disability
Penetrance for gene: PRKACB were set to Complete
Review for gene: PRKACB was set to AMBER
Added comment: ID was a feature in 2/4 individuals with PRKACB pathogenic variant reported to date.
------
Palencia-Campos et al (2020 - PMID: 33058759) report on the phenotype of 3 individuals heterozygous for PRKACA and 4 individuals heterozygous for PRKACB pathogenic variants.

The most characteristic features in all individuals with PRKACA/PRKACB mutation, included postaxial polydactyly of hands (6/7 bilateral, 1/7 unilateral) and feet (4/7 bilateral, 1/7 unilateral), brachydactyly and congenital heart defects (CHD 5/7) namely a common atrium or AVSD. Two individuals with PRKACA variant who did not have CHD had offspring with the same variant and an AVSD.

Other variably occurring features included short stature, limbs, narrow chest, abnormal teeth, oral frenula, nail dysplasia. One individual with PRKACB variant presented tumors.

Intellectual disability was reported in 2/4 individuals with PRKACB variant (1/4: mild, 1/4: severe). The 3 individuals with PRKACA variant did not present ID.

As the phenotype was overall suggestive of Ellis-van Creveld syndrome (or the allelic Weyers acrofacial dysostosis), although these diagnoses were ruled out following analysis of EVC and EVC2 genes.

WES was carried out in all.

PRKACA : A single heterozygous missense variant was identified in 3 individuals from 3 families (NM_002730.4:c.409G>A / p.Gly137Arg) with 1 of the probands harboring the variant in mosaic state (28% of reads) and having 2 similarly affected offspring. The variant was de novo in one individual and inherited in a third one having a similarly affected fetus (narrow thorax, postaxial polyd, AVSD).

PRKACB : 4 different variants were identified (NM_002731.3: p.His88Arg/Asn, p.Gly235Arg, c.161C>T - p.Ser54Leu). One of the individuals was mosaic for the latter variant, while in all other cases the variant had occurred de novo.

Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes.

The authors provide evidence that the variants confer increased sensitivity of PKA holoenzymes to activation by cAMP (compared to wt).

By performing ectopic expression of wt or mt PRKACA/B (variants studied : PRKACA p.Gly137Arg / PRKACB p.Gly235Arg) in NIH 3T3 fibroblasts, the authors demonstrate that inhibition of hedgehog signaling likely underlyies the developmental defects observed in affected individuals.

As for PRKACA, the authors cite another study where a 31-month old female with EvC syndrome diagnosis was found to harbor the aforementioned variant (NM_001304349.1:c.637G>A:p.Gly213Arg corresponding to NM_002730.4:c.409G>A / p.Gly137Arg) as a de novo event. Without additional evidence at the time, the variant was considered to be a candidate for this subject's phenotype (Monies et al 2019 – PMID: 31130284).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3098 DPH1 Zornitza Stark edited their review of gene: DPH1: Added comment: Four unrelated families reported, 11 affected individuals. Common clinical features include abnormal skull shape (trigonocephaly, scaphocephaly, or prominent forehead accompanied with metopic ridge), distinctive face (downslanted palpebral fissures, low set ears, depressed nasal bridge, and sparse hair on the scalp, eyelashes, and/or eyebrows), short stature, developmental delay, and intellectual disability. Heart and brain malformations are also frequently observed.; Changed publications: 29362492, 29410513, 25558065, 26220823
Intellectual disability syndromic and non-syndromic v0.3095 JARID2 Zornitza Stark changed review comment from: 13 additional individuals reported, note CNVs common.; to: 13 additional individuals reported, note CNVs common but LOF sequence variants identified too.
Intellectual disability syndromic and non-syndromic v0.3095 JARID2 Zornitza Stark edited their review of gene: JARID2: Added comment: 13 additional individuals reported, note CNVs common.; Changed rating: GREEN; Changed publications: 23294540, 33077894
Intellectual disability syndromic and non-syndromic v0.3092 NUDT2 Zornitza Stark changed review comment from: Two additional families reported with a different homozygous variant and ID/polyneuropathy phenotype. Upgrade to Green.; to: Three individuals from two additional families reported with a different homozygous variant and ID/polyneuropathy phenotype. Upgrade to Green.
Intellectual disability syndromic and non-syndromic v0.3078 CSNK1G1 Konstantinos Varvagiannis changed review comment from: Gold et al (2020 - PMID: 33009664) report 5 individuals with CSNK1G1 variants, including updated information on a previously reported subject (Martin et al 2014 - PMID: 24463883).

Features included DD (5/5) with associated expressive language delay, ASD (in at least 3/5), seizures (2/5), dysmorphic facial features (4/5 arched eyebrows, 3/5 prominent central incisors, 2/5 epicanthus) and limb anomalies (2/5 - proximally placed thumb, 5th f. clinodactyly, asymmetric overgrowth - the other individual had tapering fingers). GI problems were observed in 4/5. Two individuals had macrocephaly and one had microcephaly. There was no formal developmental assessment although ID might be implied in at least 3 individuals (p1: 20y - single words/regression in walking following a seizure episode, p2: 8y - first words at 5y, assistance to feed, dress and bathe, ASD, p4: 13y - regression, assistance to feed and dress).

CSNK1G1 encodes the gamma-1 isoform of casein kinase 1, a protein involved in growth and cell morphogenesis. The gene has ubiquitous expression, incl. brain. As commented, in brain it regulates phosphorylation of NMDA receptors, playing a role in synaptic transmission (4 articles cited).

One individual had a 1.2 kb deletion spanning exon 3 of CSNK1G1 [chr15:64550952-64552120 - GRCh37]. Parental samples were unavailable for this individual. Four individuals were found to harbor de novo CSNK1G1 variants [NM_022048.3: c.688C>T - p.(Arg230Trp) dn | c.1255C>T - p.(Gln419*) dn | c.1214+5G>A dn with in silico predictions in favor of splice disruption | c.419C>T - p.(Thr140Met) dn].

Arg230Trp is however present once in gnomAD. The stopgain variant is located in the last exon and predicted to skip NMD.

There were no variant studies performed.

The Drosophila gish gene encodes a CK1γ homolog with preferential expression in the mushroom body. Heterozygous and homozygous mutants exhibit impairment in memory retention, more severe in homozygous flies. gish was also identified as a seizure modifier in a fly epilepsy model (heterozygous para mt flies).

The authors also speculate that impaired transduction of LRP6 (and WNT signaling) might be implicated.

Finally the authors discuss the phenotype of individuals in Decipher one of whom (327861) harbors a frameshift variant and presenting ID, epilepsy and progressive spasticity. [NB. Inheritance of this variant is not specified, while this individual has a further inherited SCN2A missense SNV]. Two further Decipher cases with microdeletions spanning CSNK1G1 (and additional variants) are also discussed.

Overall, this gene can be considered for inclusion with probably amber rating.
Sources: Literature; to: Gold et al (2020 - PMID: 33009664) report 5 individuals with CSNK1G1 variants, including updated information on a previously reported subject (Martin et al 2014 - PMID: 24463883).

Features included DD (5/5) with associated expressive language delay, ASD (in at least 3/5), seizures (2/5), dysmorphic facial features (4/5 arched eyebrows, 3/5 prominent central incisors, 2/5 epicanthus) and limb anomalies (2/5 - proximally placed thumb, 5th f. clinodactyly, asymmetric overgrowth - the other individual had tapering fingers). GI problems were observed in 4/5. Two individuals had macrocephaly and one had microcephaly. There was no formal developmental assessment although ID might be implied in at least 3 individuals (p1: 20y - single words/regression in walking following a seizure episode, p2: 8y - first words at 5y, assistance to feed, dress and bathe, ASD, p4: 13y - regression, assistance to feed and dress).

CSNK1G1 encodes the gamma-1 isoform of casein kinase 1, a protein involved in growth and cell morphogenesis. The gene has ubiquitous expression, incl. brain. As commented, in brain it regulates phosphorylation of NMDA receptors, playing a role in synaptic transmission (4 articles cited).

One individual had a 1.2 kb deletion spanning exon 3 of CSNK1G1 [chr15:64550952-64552120 - GRCh37]. Parental samples were unavailable for this individual. Four individuals were found to harbor de novo CSNK1G1 variants [NM_022048.3: c.688C>T - p.(Arg230Trp) dn | c.1255C>T - p.(Gln419*) dn | c.1214+5G>A dn with in silico predictions in favor of splice disruption | c.419C>T - p.(Thr140Met) dn].

Arg230Trp is however present once in gnomAD. The stopgain variant is located in the last exon and predicted to skip NMD.

There were no variant studies performed.

The Drosophila gish gene encodes a CK1γ homolog with preferential expression in the mushroom body. Heterozygous and homozygous mutants exhibit impairment in memory retention, more severe in homozygous flies. gish was also identified as a seizure modifier in a fly epilepsy model (heterozygous para mt flies).

The authors also speculate that impaired transduction of LRP6 (and WNT signaling) might be implicated.

Finally the authors discuss the phenotype of individuals in Decipher one of whom (327861) harbors a frameshift variant and presented ID, epilepsy and progressive spasticity. [NB. Inheritance of this variant is not specified, while this individual has a further inherited SCN2A missense SNV]. Two further Decipher cases with microdeletions spanning CSNK1G1 (and additional variants) are also discussed.

Overall, this gene can be considered for inclusion with probably amber rating.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3078 CSNK1G1 Konstantinos Varvagiannis changed review comment from: Gold et al (2020 - PMID: 33009664) report 5 individuals with CSNK1G1 variants, including updated information on a previously reported subject (Martin et al 2014 - PMID: 24463883).

Features included DD (5/5) with associated expressive language delay, ASD (in at least 3/5), seizures (2/5), dysmorphic facial features (4/5 arched eyebrows, 3/5 prominent central incisors, 2/5 epicanthus) and limb anomalies (2/5 - proximally placed thumb, 5th f. clinodactyly, asymmetric overgrowth - the other individual had tapering fingers). GI problems were observed in 4/5. Two individuals had macrocephaly and one had microcephaly. There was no formal developmental assessment although ID might be implied in at least 3 individuals (p1: 20y - single words/regression in walking following a seizure episode, p2: 8y - first words at 5y, assistance to feed, dress and bathe, ASD, p4: 13y - regression, assistance to feed and dress).

CSNK1G1 encodes the gamma-1 isoform of casein kinase 1, a protein involved in growth and cell morphogenesis. The gene has ubiquitous expression, incl. brain. As commented, in brain it regulates phosphorylation of NMDA receptors, playing a role in synaptic transmission (4 articles cited).

One individual had a 1.2 kb deletion spanning exon 3 of CSNK1G1 [chr15:64550952-64552120 - GRCh37]. Parental samples were unavailable for this individual. Four individuals were found to harbor de novo CSNK1G1 variants [NM_022048.3: c.688C>T - p.(Arg230Trp) dn | c.1255C>T - p.(Gln419*) dn | c.1214+5G>A dn with in silico predictions in favor of splice disruption | c.419C>T - p.(Thr140Met) dn].

Arg230Trp is however present once in gnomAD. The stopgain variant is located in the last exon and predicted to skip NMD.

There were no variant studies performed.

The Drosophila gish gene encodes a CK1γ homolog with preferential expression in the mushroom body. Heterozygous and homozygous mutants exhibit impairment in memory retention, more severe in homozygous flies. gish was also identified as a seizure modifier in a fly epilepsy model (heterozygous para mt flies).

The authors also speculate that impaired transduction of LRP6 (and WNT signaling) might be implicated.

Finally the authors discuss the phenotype of individuals in Decipher one of whom (327861) harbors a frameshift variant and presenting ID, epilepsy and progressive spasticity. [NB. Inheritance of this variant is not specified, while this individual has a further inherited SCN2A missense SNV]. Two further Decipher cases with microdeletions spanning CSNK1G1 (and additional variants) also discussed.

Overall, this gene can be considered for inclusion with probably amber rating.
Sources: Literature; to: Gold et al (2020 - PMID: 33009664) report 5 individuals with CSNK1G1 variants, including updated information on a previously reported subject (Martin et al 2014 - PMID: 24463883).

Features included DD (5/5) with associated expressive language delay, ASD (in at least 3/5), seizures (2/5), dysmorphic facial features (4/5 arched eyebrows, 3/5 prominent central incisors, 2/5 epicanthus) and limb anomalies (2/5 - proximally placed thumb, 5th f. clinodactyly, asymmetric overgrowth - the other individual had tapering fingers). GI problems were observed in 4/5. Two individuals had macrocephaly and one had microcephaly. There was no formal developmental assessment although ID might be implied in at least 3 individuals (p1: 20y - single words/regression in walking following a seizure episode, p2: 8y - first words at 5y, assistance to feed, dress and bathe, ASD, p4: 13y - regression, assistance to feed and dress).

CSNK1G1 encodes the gamma-1 isoform of casein kinase 1, a protein involved in growth and cell morphogenesis. The gene has ubiquitous expression, incl. brain. As commented, in brain it regulates phosphorylation of NMDA receptors, playing a role in synaptic transmission (4 articles cited).

One individual had a 1.2 kb deletion spanning exon 3 of CSNK1G1 [chr15:64550952-64552120 - GRCh37]. Parental samples were unavailable for this individual. Four individuals were found to harbor de novo CSNK1G1 variants [NM_022048.3: c.688C>T - p.(Arg230Trp) dn | c.1255C>T - p.(Gln419*) dn | c.1214+5G>A dn with in silico predictions in favor of splice disruption | c.419C>T - p.(Thr140Met) dn].

Arg230Trp is however present once in gnomAD. The stopgain variant is located in the last exon and predicted to skip NMD.

There were no variant studies performed.

The Drosophila gish gene encodes a CK1γ homolog with preferential expression in the mushroom body. Heterozygous and homozygous mutants exhibit impairment in memory retention, more severe in homozygous flies. gish was also identified as a seizure modifier in a fly epilepsy model (heterozygous para mt flies).

The authors also speculate that impaired transduction of LRP6 (and WNT signaling) might be implicated.

Finally the authors discuss the phenotype of individuals in Decipher one of whom (327861) harbors a frameshift variant and presenting ID, epilepsy and progressive spasticity. [NB. Inheritance of this variant is not specified, while this individual has a further inherited SCN2A missense SNV]. Two further Decipher cases with microdeletions spanning CSNK1G1 (and additional variants) are also discussed.

Overall, this gene can be considered for inclusion with probably amber rating.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3078 CSNK1G1 Konstantinos Varvagiannis gene: CSNK1G1 was added
gene: CSNK1G1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CSNK1G1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: CSNK1G1 were set to 33009664
Phenotypes for gene: CSNK1G1 were set to Global developmental delay; Intellectual disability; Autism; Seizures; Abnormality of the face; Abnromality of limbs
Penetrance for gene: CSNK1G1 were set to unknown
Review for gene: CSNK1G1 was set to AMBER
Added comment: Gold et al (2020 - PMID: 33009664) report 5 individuals with CSNK1G1 variants, including updated information on a previously reported subject (Martin et al 2014 - PMID: 24463883).

Features included DD (5/5) with associated expressive language delay, ASD (in at least 3/5), seizures (2/5), dysmorphic facial features (4/5 arched eyebrows, 3/5 prominent central incisors, 2/5 epicanthus) and limb anomalies (2/5 - proximally placed thumb, 5th f. clinodactyly, asymmetric overgrowth - the other individual had tapering fingers). GI problems were observed in 4/5. Two individuals had macrocephaly and one had microcephaly. There was no formal developmental assessment although ID might be implied in at least 3 individuals (p1: 20y - single words/regression in walking following a seizure episode, p2: 8y - first words at 5y, assistance to feed, dress and bathe, ASD, p4: 13y - regression, assistance to feed and dress).

CSNK1G1 encodes the gamma-1 isoform of casein kinase 1, a protein involved in growth and cell morphogenesis. The gene has ubiquitous expression, incl. brain. As commented, in brain it regulates phosphorylation of NMDA receptors, playing a role in synaptic transmission (4 articles cited).

One individual had a 1.2 kb deletion spanning exon 3 of CSNK1G1 [chr15:64550952-64552120 - GRCh37]. Parental samples were unavailable for this individual. Four individuals were found to harbor de novo CSNK1G1 variants [NM_022048.3: c.688C>T - p.(Arg230Trp) dn | c.1255C>T - p.(Gln419*) dn | c.1214+5G>A dn with in silico predictions in favor of splice disruption | c.419C>T - p.(Thr140Met) dn].

Arg230Trp is however present once in gnomAD. The stopgain variant is located in the last exon and predicted to skip NMD.

There were no variant studies performed.

The Drosophila gish gene encodes a CK1γ homolog with preferential expression in the mushroom body. Heterozygous and homozygous mutants exhibit impairment in memory retention, more severe in homozygous flies. gish was also identified as a seizure modifier in a fly epilepsy model (heterozygous para mt flies).

The authors also speculate that impaired transduction of LRP6 (and WNT signaling) might be implicated.

Finally the authors discuss the phenotype of individuals in Decipher one of whom (327861) harbors a frameshift variant and presenting ID, epilepsy and progressive spasticity. [NB. Inheritance of this variant is not specified, while this individual has a further inherited SCN2A missense SNV]. Two further Decipher cases with microdeletions spanning CSNK1G1 (and additional variants) also discussed.

Overall, this gene can be considered for inclusion with probably amber rating.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3078 LMNB2 Konstantinos Varvagiannis changed review comment from: Please consider inclusion of LMNB2 in the ID panel with amber/green rating.

Parry et al (2020 - PMID: 33033404) in a study to identify novel microcephaly genes using the DDD and 100k genomes project (100kGP) patient cohort, report on the phenotype of 13 individuals with heterozygous variant in LMNB1 (N=7) and LMNB2 (N=6).

LMNB1 : The authors identified 3 recurrent variants (c.97A>G - p.Lys33Glu (3), c.97_99del - p.Lys33del (2) , c.269G>C - p.Arg90Pro (2) / NM_005573.4) in seven individuals (3 from the DDD study, 4 from the 100kGP). In all cases were segregation studies were possible, the variant had occurred as a de novo event.

LMNB2 : 4 individuals from the DDD cohort and 1 from the 100kGP were found to harbor the same missense SNV (NM_032737.4:c.1192G>A, p.Glu398Lys). The variant had occurred de novo in 3 subjects and was inherited from a mosaic - unaffected - parent in a further case. Another individual was found to harbor c.160A>C - p.Asn54His.

LMNB1/2 common phenotypes :
All cases had congenital microcephaly (OFC -5.85 +/- 1.14 SD) appart from one individual, without history of IUGR or postnatally abnormal height (the latter in most).

Neuroimaging suggested structurally normal brain without abnormal migration. Gyral simplification / global reduction in white matter / increased extra axial spaces / enlarged ventricles were reported in 2.

LMNB1 - Global developmental delay was a feature in all (mild to severe) with some having occasional words at 7y (P3), absent speech (P9 - age category 5-10y) or ID not further specified (P13).

LMNB2 - DD was a feature in all 6 subjects (5/6 moderate to severe - 1/6 GDD). 5/6 were 10y or older with language (in 3 language not achieved) and motor deficits (walking not achieved in 1/6 - occured at the age of 6y in 1/6).

Facial features were not consistent nor suggestive of a syndromic diagnosis (sloping forehead in some).

Overall, as the authors comment, the phenotype corresponded to a severe nonsyndromic microcephaly (although additional features were reported in some).

Animal model:
Microcephaly is supported by Lmnb1 ko mouse model. Lmnb1/2 ko mice however display migration defects, while Lmnb2 ko mice do not have reduced size at birth. Heterozygous Lmnb1 mice do not present microcephaly. It is suggested that while animal models support a similar (to the human) phenotype the underlying mechanism is different.

Variant effect :
variants were shown to affect highly conserved residues within the lamin a-helical rod-domain. As affected residues are conserved in LMNA, modelling with available LMNA PDB structures, suggested disrupted interactions required for higher-order assembly of lamin filaments.

Recurrence of specific variants at specific residues, absence of pLoF ones, the htz mouse Lmnb1 phenotype (absence of microcephaly) and the proposed mechanism (perturbation of complex formation) suggest a gain-of-function/dominant-negative effect rather than happloinsufficiency.

[Please also note the additional OMIM phenotypes for LMNB1 / LMNB2 - not here reviewed]
Sources: Literature; to: Please consider inclusion of LMNB2 in the ID panel with amber/green rating.

Parry et al (2020 - PMID: 33033404) in a study to identify novel microcephaly genes using the DDD and 100k genomes project (100kGP) patient cohort, report on the phenotype of 13 individuals with heterozygous variant in LMNB1 (N=7) and LMNB2 (N=6).

LMNB1 : The authors identified 3 recurrent variants (c.97A>G - p.Lys33Glu (3), c.97_99del - p.Lys33del (2) , c.269G>C - p.Arg90Pro (2) / NM_005573.4) in seven individuals (3 from the DDD study, 4 from the 100kGP). In all cases were segregation studies were possible, the variant had occurred as a de novo event.

LMNB2 : 4 individuals from the DDD cohort and 1 from the 100kGP were found to harbor the same missense SNV (NM_032737.4:c.1192G>A, p.Glu398Lys). The variant had occurred de novo in 3 subjects and was inherited from a mosaic - unaffected - parent in a further case. Another individual was found to harbor c.160A>C - p.Asn54His.

LMNB1/2 common phenotypes :
All cases had congenital microcephaly (OFC -5.85 +/- 1.14 SD) apart from one individual, without history of IUGR or postnatally abnormal height (the latter in most).

Neuroimaging suggested structurally normal brain without abnormal migration. Gyral simplification / global reduction in white matter / increased extra axial spaces / enlarged ventricles were reported in 2.

LMNB1 - Global developmental delay was a feature in all (mild to severe) with some having occasional words at 7y (P3), absent speech (P9 - age category 5-10y) or ID not further specified (P13).

LMNB2 - DD was a feature in all 6 subjects (5/6 moderate to severe - 1/6 GDD). 5/6 were 10y or older with language (in 3 language not achieved) and motor deficits (walking not achieved in 1/6 - occurred at the age of 6y in 1/6).

Facial features were not consistent nor suggestive of a syndromic diagnosis (sloping forehead in some).

Overall, as the authors comment, the phenotype corresponded to a severe nonsyndromic microcephaly (although additional features were reported in some).

Animal model:
Microcephaly is supported by Lmnb1 ko mouse model. Lmnb1/2 ko mice however display migration defects, while Lmnb2 ko mice do not have reduced size at birth. Heterozygous Lmnb1 mice do not present microcephaly. It is suggested that while animal models support a similar (to the human) phenotype the underlying mechanism is different.

Variant effect :
variants were shown to affect highly conserved residues within the lamin a-helical rod-domain. As affected residues are conserved in LMNA, modelling with available LMNA PDB structures, suggested disrupted interactions required for higher-order assembly of lamin filaments.

Recurrence of specific variants at specific residues, absence of pLoF ones, the htz mouse Lmnb1 phenotype (absence of microcephaly) and the proposed mechanism (perturbation of complex formation) suggest a gain-of-function/dominant-negative effect rather than happloinsufficiency.

[Please also note the additional OMIM phenotypes for LMNB1 / LMNB2 - not here reviewed]
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3078 LMNB2 Konstantinos Varvagiannis gene: LMNB2 was added
gene: LMNB2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: LMNB2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: LMNB2 were set to 33033404
Phenotypes for gene: LMNB2 were set to Congenital microcephaly; Global developmental delay; Intellectual disability
Penetrance for gene: LMNB2 were set to Complete
Mode of pathogenicity for gene: LMNB2 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: LMNB2 was set to GREEN
Added comment: Please consider inclusion of LMNB2 in the ID panel with amber/green rating.

Parry et al (2020 - PMID: 33033404) in a study to identify novel microcephaly genes using the DDD and 100k genomes project (100kGP) patient cohort, report on the phenotype of 13 individuals with heterozygous variant in LMNB1 (N=7) and LMNB2 (N=6).

LMNB1 : The authors identified 3 recurrent variants (c.97A>G - p.Lys33Glu (3), c.97_99del - p.Lys33del (2) , c.269G>C - p.Arg90Pro (2) / NM_005573.4) in seven individuals (3 from the DDD study, 4 from the 100kGP). In all cases were segregation studies were possible, the variant had occurred as a de novo event.

LMNB2 : 4 individuals from the DDD cohort and 1 from the 100kGP were found to harbor the same missense SNV (NM_032737.4:c.1192G>A, p.Glu398Lys). The variant had occurred de novo in 3 subjects and was inherited from a mosaic - unaffected - parent in a further case. Another individual was found to harbor c.160A>C - p.Asn54His.

LMNB1/2 common phenotypes :
All cases had congenital microcephaly (OFC -5.85 +/- 1.14 SD) appart from one individual, without history of IUGR or postnatally abnormal height (the latter in most).

Neuroimaging suggested structurally normal brain without abnormal migration. Gyral simplification / global reduction in white matter / increased extra axial spaces / enlarged ventricles were reported in 2.

LMNB1 - Global developmental delay was a feature in all (mild to severe) with some having occasional words at 7y (P3), absent speech (P9 - age category 5-10y) or ID not further specified (P13).

LMNB2 - DD was a feature in all 6 subjects (5/6 moderate to severe - 1/6 GDD). 5/6 were 10y or older with language (in 3 language not achieved) and motor deficits (walking not achieved in 1/6 - occured at the age of 6y in 1/6).

Facial features were not consistent nor suggestive of a syndromic diagnosis (sloping forehead in some).

Overall, as the authors comment, the phenotype corresponded to a severe nonsyndromic microcephaly (although additional features were reported in some).

Animal model:
Microcephaly is supported by Lmnb1 ko mouse model. Lmnb1/2 ko mice however display migration defects, while Lmnb2 ko mice do not have reduced size at birth. Heterozygous Lmnb1 mice do not present microcephaly. It is suggested that while animal models support a similar (to the human) phenotype the underlying mechanism is different.

Variant effect :
variants were shown to affect highly conserved residues within the lamin a-helical rod-domain. As affected residues are conserved in LMNA, modelling with available LMNA PDB structures, suggested disrupted interactions required for higher-order assembly of lamin filaments.

Recurrence of specific variants at specific residues, absence of pLoF ones, the htz mouse Lmnb1 phenotype (absence of microcephaly) and the proposed mechanism (perturbation of complex formation) suggest a gain-of-function/dominant-negative effect rather than happloinsufficiency.

[Please also note the additional OMIM phenotypes for LMNB1 / LMNB2 - not here reviewed]
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3078 LMNB1 Konstantinos Varvagiannis commented on gene: LMNB1: There is an additional report on LMBN1/2-associated phenotypes supporting green rating of the gene in the current panel.

Parry et al (2020 - PMID: 33033404) in a study to identify novel microcephaly genes using the DDD and 100k genomes project (100kGP) patient cohort, report on the phenotype of 13 individuals with heterozygous variant in LMNB1 (N=7) and LMNB2 (N=6).

LMNB1 : The authors identified 3 recurrent variants (c.97A>G - p.Lys33Glu (3), c.97_99del - p.Lys33del (2) , c.269G>C - p.Arg90Pro (2) / NM_005573.4) in seven individuals (3 from the DDD study, 4 from the 100kGP). In all cases were segregation studies were possible, the variant had occurred as a de novo event.

LMNB2 : 4 individuals from the DDD cohort and 1 from the 100kGP were found to harbor the same missense SNV (NM_032737.4:c.1192G>A, p.Glu398Lys). The variant had occurred de novo in 3 subjects and was inherited from a mosaic - unaffected - parent in a further case. Another individual was found to harbor c.160A>C - p.Asn54His.

LMNB1/2 common phenotypes :
All cases had congenital microcephaly (OFC -5.85 +/- 1.14 SD) appart from one individual, without history of IUGR or postnatally abnormal height (the latter in most).

Neuroimaging suggested structurally normal brain without abnormal migration. Gyral simplification / global reduction in white matter / increased extra axial spaces / enlarged ventricles were reported in 2.

LMNB1 - Global developmental delay was a feature in all (mild to severe) with some having occasional words at 7y (P3), absent speech (P9 - age category 5-10y) or ID not further specified (P13).

LMNB2 - DD was a feature in all 6 subjects (5/6 moderate to severe - 1/6 GDD). 5/6 were 10y or older with language (in 3 language not achieved) and motor deficits (walking not achieved in 1/6 - occured at the age of 6y in 1/6).

Facial features were not consistent nor suggestive of a syndromic diagnosis (sloping forehead in some).

Overall, as the authors comment, the phenotype corresponded to a severe nonsyndromic microcephaly (although additional features were reported in some).

Animal model:
Microcephaly is supported by Lmnb1 ko mouse model. Lmnb1/2 ko mice however display migration defects, while Lmnb2 ko mice do not have reduced size at birth. Heterozygous Lmnb1 mice do not present microcephaly. It is suggested that while animal models support a similar (to the human) phenotype the underlying mechanism is different.

Variant effect :
variants were shown to affect highly conserved residues within the lamin a-helical rod-domain. As affected residues are conserved in LMNA, modelling with available LMNA PDB structures, suggested disrupted interactions required for higher-order assembly of lamin filaments.

Recurrence of specific variants at specific residues, absence of pLoF ones, the htz mouse Lmnb1 phenotype (absence of microcephaly) and the proposed mechanism (perturbation of complex formation) suggest a gain-of-function/dominant-negative effect rather than happloinsufficiency.

[Please also note the additional OMIM phenotypes for LMNB1 / LMNB2 - not here reviewed]

--------
Intellectual disability syndromic and non-syndromic v0.3071 WDPCP Zornitza Stark changed review comment from: Two families reported; the first one with a BBS phenotype, and in the second one affected individual had polysyndactyly and tongue hamartomas, so phenotype consistent with OFD rather than BBS.; to: At least four families reported with ciliopathy phenotypes (BBS, OFD, syndromic retinopathy).
Intellectual disability syndromic and non-syndromic v0.3062 ITFG2 Konstantinos Varvagiannis gene: ITFG2 was added
gene: ITFG2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ITFG2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ITFG2 were set to 28397838; https://doi.org/10.1038/s41525-020-00150-z
Phenotypes for gene: ITFG2 were set to Neurodevelopmental abnormality; Intellectual disability; Developmental regression; Ataxia
Penetrance for gene: ITFG2 were set to Complete
Review for gene: ITFG2 was set to AMBER
Added comment: ITFG2 was suggested to be a candidate gene for autosomal recessive ID in the study by Harripaul et al (2018 - PMID: 28397838). The authors performed microarray and exome sequencing in 192 consanguineous families and identified a homozygous ITGF2 stopgain variant (NM_018463.3:c.472G>T / p.Glu158*) along with 3 additional variants segregating with ID within an investigated family (PK51).

Cheema et al (2020 - https://doi.org/10.1038/s41525-020-00150-z) report briefly on a male, born to consanguineous parents presenting with NDD, seizures, regression and ataxia. There was a similarly affected female sibling. Evaluation of ROH revealed a homozygous ITFG2 nonsense variant [NM_018463.3:c.361C>T / p.(Gln121*)]. Families in this study were investigated by trio WES or WGS.

Evaluation of data of the same lab revealed 3 additional unrelated subjects with overlapping phenotypes, notably NDD and ataxia. These individuals were - each - homozygous for pLoF variants [NM_018463.3:c.848-1G>A; NM_018463.3:c.704dupC, p.(Ala236fs), NM_018463.3:c.1000_1001delAT, p.(Ile334fs)].

As discussed in OMIM, ITFG2 encodes a subunit of the KICSTOR protein complex, having a role in regulating nutrient sensing by MTOR complex-1 (Wolfson et al 2017 - PMID : 28199306).

Please consider inclusion in the ID panel with amber rating, pending further details.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3062 SHMT2 Konstantinos Varvagiannis gene: SHMT2 was added
gene: SHMT2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SHMT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SHMT2 were set to 33015733
Phenotypes for gene: SHMT2 were set to Congenital microcephaly; Infantile axial hypotonia; Spastic paraparesis; Global developmental delay; Intellectual disability; Abnormality of the corpus callosum; Abnormal cortical gyration; Hypertrophic cardiomyopathy; Abnormality of the face; Proximal placement of thumb; 2-3 toe syndactyly
Penetrance for gene: SHMT2 were set to Complete
Review for gene: SHMT2 was set to GREEN
Added comment: García‑Cazorla et al. (2020 - PMID: 33015733) report 5 individuals (from 4 families) with a novel brain and heart developmental syndrome caused by biallelic SHMT2 pathogenic variants.

All affected subjects presented similar phenotype incl. microcephaly at birth (5/5 with OFC < -2 SD though in 2/5 cases N OFC was observed later), DD and ID (1/5 mild-moderate, 1/5 moderate, 3/5 severe), motor dysfunction in the form of spastic (5/5) paraparesis, ataxia/dysmetria (3/4), intention tremor (in 3/?) and/or peripheral neuropathy (2 sibs). They exhibited corpus callosum hypoplasia (5/5) and perisylvian microgyria-like pattern (4/5). Cardiac problems were reported in all, with hypertrophic cardiomyopathy in 4/5 (from 3 families) and atrial-SD in the 5th individual (1/5). Common dysmorphic features incl. long palpebral/fissures, eversion of lateral third of lower eylids, arched eyebrows, long eyelashes, thin upper lip, short Vth finger, fetal pads, mild 2-3 toe syndactyly, proximally placed thumbs.

Biallelic variants were identified following exome sequencing in all (other investigations not mentioned). Identified variants were in all cases missense SNVs or in-frame del, which together with evidence from population databases and mouse model might suggest a hypomorphic effect of variants and intolerance/embryonic lethality for homozygous LoF ones.

SHMT2 encodes the mitohondrial form of serine hydroxymethyltransferase. The enzyme transfers one-carbon units from serine to tetrahydrofolate (THF) and generates glycine and 5,10,methylene-THF.

Mitochondrial defect was suggested by presence of ragged red fibers in myocardial biopsy of one patient. Quadriceps and myocardial biopsies of the same individual were overall suggestive of myopathic changes.

While plasma metabolites were within N range and SHMT2 protein levels not significantly altered in patient fibroblasts, the authors provide evidence for impaired enzymatic function eg. presence of the SHMT2 substrate (THF) in patient but not control (mitochondria-enriched) fibroblasts , decrease in glycine/serine ratios, impared folate metabolism. Patient fibroblasts displayed impaired oxidative capacity (reduced ATP levels in a medium without glucose, diminished oxygen consumption rates). Mitochondrial membrane potential and ROS levels were also suggestive of redox malfunction.

Shmt2 ko in mice was previously shown to be embryonically lethal attributed to severe mitochondrial respiration defects, although there was no observed brain metabolic defect.

The authors performed Shmt2 knockdown in motoneurons in Drosophila, demonstrating neuromuscular junction (# of satellite boutons) and motility defects (climbing distance/velocity).

Overall this gene can be considered for inclusion with (probably) green rating in gene panels for ID, metabolic / mitochondrial disorders, cardiomyopathy, congenital microcephaly, corpus callosum anomalies, etc.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3062 VPS41 Zornitza Stark gene: VPS41 was added
gene: VPS41 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: VPS41 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: VPS41 were set to 32808683
Phenotypes for gene: VPS41 were set to Dystonia; intellectual disability
Review for gene: VPS41 was set to RED
Added comment: Single individual reported with homozygous canonical splice site variant resulting in exon 7 skipping, and global developmental delay and generalized dystonia. He attained a few words and voluntary limb movements but never sat unsupported. He had pale optic discs and an axonal neuropathy. From 6 years of age, his condition began to deteriorate, with reduced motor abilities and alertness. An MRI of the brain showed atrophy of the superior cerebellar vermis and slimming of the posterior limb of the corpus callosum. VPS41 is component of the HOPS complex and other genes in the complex have been implicated in movement disorders.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3053 NEMF Konstantinos Varvagiannis changed review comment from: Biallelic (and possibly monoallelic) pathogenic variants in this gene are associated with DD/ID.

Martin et al (2020 - PMID:32934225) report on 8 individuals from 6 families with a juvenile neuromuscular disease due to biallelic NEMF variants. (In one of these 8 cases it could not be ruled out that a de novo and maternally inherited variant were on the same allele, as phase was not determined). A ninth individual with similar presentation was found to harbor a single NEMF missense SNV as de novo event (due to a speculated dominant-negative effect). This individual had a similar presentation.

Features incl. hypotonia (4/8 with biallelic variant (B) | 1/1 monoallelic (M) ), DD/ID (7/8B | 0/1M) with speech delay as universal feature (8/8B | 1/1M), axonal neuropathy (3/3B | 1/1M), ataxia (3/8B | 0/1M). Other findings included tremor (1/7B | 1/1M), abnormal brain imaging (2/6B / ?/1M), kyphosis/scoliosis (4/8B | 0/1M), respiratory distress (1/8B | 0/1M).

NEMF (Rqc2 in yeast) encodes the nuclear export mediator factor, a component of the Ribosome-associated Quality Control (RCQ) complex which is involved in proteolytic targeting of incomplete polypeptides prodduced by ribosome stalling. NEMF facilitates the recruitment of E3 ligase Listerin (LTN1) which ubiquitinates nascent polypeptide chains for subsequent proteasomal degradation.

The author provide evidence that mice homozygous for Nemf missense mutations display progressive motor phenotypes, exhibit neurogenic atrophy and progressive axonal degeneration. A further NEMF-null mouse model displayed more severe phenotype (with heterozygous mice being unaffected).

Equivalent mutations (of those in the above mouse model) in yeast (Rqc2) were shown to interfere with its ability to modify aberrant translation products with C-terminal tails which assist RQC-mediated protein degradation.

Mutation of Ltn1 (belonging to the same protein control pathway) has been also shown to lead to neurodegeneration im mice.

Overall NEMF is thought to play a role in neuronal translational homeostasis and the disorder to be mediated by dysfunction of the RQC pathway (normally protecting neurons against degeneration).; to: Biallelic (and possibly monoallelic) pathogenic variants in this gene are associated with DD/ID.

Martin et al (2020 - PMID:32934225) report on 8 individuals from 6 families with a juvenile neuromuscular disease due to biallelic NEMF variants. (In one of these 8 cases it could not be ruled out that a de novo and maternally inherited variant were on the same allele, as phase was not determined). A ninth individual with similar presentation was found to harbor a single NEMF missense SNV as de novo event (due to a speculated dominant-negative effect). This individual had a similar presentation.

Features incl. hypotonia (4/8 with biallelic variant (B) | 1/1 monoallelic (M) ), DD/ID (7/8B | 0/1M) with speech delay as universal feature (8/8B | 1/1M), axonal neuropathy (3/3B | 1/1M), ataxia (3/8B | 0/1M). Other findings included tremor (1/7B | 1/1M), abnormal brain imaging (2/6B / ?/1M), kyphosis/scoliosis (4/8B | 0/1M), respiratory distress (1/8B | 0/1M).

NEMF (Rqc2 in yeast) encodes the nuclear export mediator factor, a component of the Ribosome-associated Quality Control (RCQ) complex which is involved in proteolytic targeting of incomplete polypeptides produced by ribosome stalling. NEMF facilitates the recruitment of E3 ligase Listerin (LTN1) which ubiquitinates nascent polypeptide chains for subsequent proteasomal degradation.

The author provide evidence that mice homozygous for Nemf missense mutations display progressive motor phenotypes, exhibit neurogenic atrophy and progressive axonal degeneration. A further NEMF-null mouse model displayed more severe phenotype (with heterozygous mice being unaffected).

Equivalent mutations (of those in the above mouse model) in yeast (Rqc2) were shown to interfere with its ability to modify aberrant translation products with C-terminal tails which assist RQC-mediated protein degradation.

Mutation of Ltn1 (belonging to the same protein control pathway) has been also shown to lead to neurodegeneration in mice.

Overall NEMF is thought to play a role in neuronal translational homeostasis and the disorder to be mediated by dysfunction of the RQC pathway (normally protecting neurons against degeneration).
Intellectual disability syndromic and non-syndromic v0.3053 NEMF Konstantinos Varvagiannis changed review comment from: Biallelic (and possibly monoallelic) pathogenic variants in this gene are associated with DD/ID.

Martin et al (2020 - PMID:32934225) report on 8 individuals from 6 families with a juvenile neuromuscular disease due to biallelic NEMF variants. (In one of these 8 cases it could not be ruled out that a de novo and maternally inherited variants were on the same allele, as phase was not been determined). A ninth individual with similar presentation was found to harbor a single NEMF missense SNV as de novo event (due to a speculated dominant-negative effect). This individual had a similar presentation.

Features incl. hypotonia (4/8 with biallelic variant (B) | 1/1 monoallelic (M) ), DD/ID (7/8B | 0/1M) with speech delay as universal feature (8/8B | 1/1M), axonal neuropathy (3/3B | 1/1M), ataxia (3/8B | 0/1M). Other findings included tremor (1/7B | 1/1M), abnormal brain imaging (2/6B / ?/1M), kyphosis/scoliosis (4/8B | 0/1M), respiratory distress (1/8B | 0/1M).

NEMF (Rqc2 in yeast) encodes the nuclear export mediator factor, a component of the Ribosome-associated Quality Control (RCQ) complex which is involved in proteolytic targeting of incomplete polypeptides prodduced by ribosome stalling. NEMF facilitates the recruitment of E3 ligase Listerin (LTN1) which ubiquitinates nascent polypeptide chains for subsequent proteasomal degradation.

The author provide evidence that mice homozygous for Nemf missense mutations display progressive motor phenotypes, exhibit neurogenic atrophy and progressive axonal degeneration. A further NEMF-null mouse model displayed more severe phenotype (with heterozygous mice being unaffected).

Equivalent mutations (of those in the above mouse model) in yeast (Rqc2) were shown to interfere with its ability to modify aberrant translation products with C-terminal tails which assist RQC-mediated protein degradation.

Mutation of Ltn1 (belonging to the same protein control pathway) has been also shown to lead to neurodegeneration im mice.

Overall NEMF is thought to play a role in neuronal translational homeostasis and the disorder to be mediated by dysfunction of the RQC pathway (normally protecting neurons against degeneration).; to: Biallelic (and possibly monoallelic) pathogenic variants in this gene are associated with DD/ID.

Martin et al (2020 - PMID:32934225) report on 8 individuals from 6 families with a juvenile neuromuscular disease due to biallelic NEMF variants. (In one of these 8 cases it could not be ruled out that a de novo and maternally inherited variant were on the same allele, as phase was not determined). A ninth individual with similar presentation was found to harbor a single NEMF missense SNV as de novo event (due to a speculated dominant-negative effect). This individual had a similar presentation.

Features incl. hypotonia (4/8 with biallelic variant (B) | 1/1 monoallelic (M) ), DD/ID (7/8B | 0/1M) with speech delay as universal feature (8/8B | 1/1M), axonal neuropathy (3/3B | 1/1M), ataxia (3/8B | 0/1M). Other findings included tremor (1/7B | 1/1M), abnormal brain imaging (2/6B / ?/1M), kyphosis/scoliosis (4/8B | 0/1M), respiratory distress (1/8B | 0/1M).

NEMF (Rqc2 in yeast) encodes the nuclear export mediator factor, a component of the Ribosome-associated Quality Control (RCQ) complex which is involved in proteolytic targeting of incomplete polypeptides prodduced by ribosome stalling. NEMF facilitates the recruitment of E3 ligase Listerin (LTN1) which ubiquitinates nascent polypeptide chains for subsequent proteasomal degradation.

The author provide evidence that mice homozygous for Nemf missense mutations display progressive motor phenotypes, exhibit neurogenic atrophy and progressive axonal degeneration. A further NEMF-null mouse model displayed more severe phenotype (with heterozygous mice being unaffected).

Equivalent mutations (of those in the above mouse model) in yeast (Rqc2) were shown to interfere with its ability to modify aberrant translation products with C-terminal tails which assist RQC-mediated protein degradation.

Mutation of Ltn1 (belonging to the same protein control pathway) has been also shown to lead to neurodegeneration im mice.

Overall NEMF is thought to play a role in neuronal translational homeostasis and the disorder to be mediated by dysfunction of the RQC pathway (normally protecting neurons against degeneration).
Intellectual disability syndromic and non-syndromic v0.3053 NEMF Konstantinos Varvagiannis changed review comment from: Biallelic (and possibly monoallelic) pathogenic variants in this gene are associated with DD/ID.

Martin et al (2020 - PMID:32934225) report on 8 individuals from 6 families with a juvenile neuromuscular disease due to biallelic NEMF variants. (In one of these 8 cases it could be ruled out that the de novo and maternally inherited variants were on the same allele, as phase was not been determined). A ninth individual with similar presentation was found to harbor a single NEMF missense SNV as de novo event (due to a speculated dominant-negative effect). This individual had a similar presentation.

Features incl. hypotonia (4/8 with biallelic variant (B) | 1/1 monoallelic (M) ), DD/ID (7/8B | 0/1M) with speech delay as universal feature (8/8B | 1/1M), axonal neuropathy (3/3B | 1/1M), ataxia (3/8B | 0/1M). Other findings included tremor (1/7B | 1/1M), abnormal brain imaging (2/6B / ?/1M), kyphosis/scoliosis (4/8B | 0/1M), respiratory distress (1/8B | 0/1M).

NEMF (Rqc2 in yeast) encodes the nuclear export mediator factor, a component of the Ribosome-associated Quality Control (RCQ) complex which is involved in proteolytic targeting of incomplete polypeptides prodduced by ribosome stalling. NEMF facilitates the recruitment of E3 ligase Listerin (LTN1) which ubiquitinates nascent polypeptide chains for subsequent proteasomal degradation.

The author provide evidence that mice homozygous for Nemf missense mutations display progressive motor phenotypes, exhibit neurogenic atrophy and progressive axonal degeneration. A further NEMF-null mouse model displayed more severe phenotype (with heterozygous mice being unaffected).

Equivalent mutations (of those in the above mouse model) in yeast (Rqc2) were shown to interfere with its ability to modify aberrant translation products with C-terminal tails which assist RQC-mediated protein degradation.

Mutation of Ltn1 (belonging to the same protein control pathway) has been also shown to lead to neurodegeneration im mice.

Overall NEMF is thought to play a role in neuronal translational homeostasis and the disorder to be mediated by dysfunction of the RQC pathway (normally protecting neurons against degeneration).; to: Biallelic (and possibly monoallelic) pathogenic variants in this gene are associated with DD/ID.

Martin et al (2020 - PMID:32934225) report on 8 individuals from 6 families with a juvenile neuromuscular disease due to biallelic NEMF variants. (In one of these 8 cases it could not be ruled out that a de novo and maternally inherited variants were on the same allele, as phase was not been determined). A ninth individual with similar presentation was found to harbor a single NEMF missense SNV as de novo event (due to a speculated dominant-negative effect). This individual had a similar presentation.

Features incl. hypotonia (4/8 with biallelic variant (B) | 1/1 monoallelic (M) ), DD/ID (7/8B | 0/1M) with speech delay as universal feature (8/8B | 1/1M), axonal neuropathy (3/3B | 1/1M), ataxia (3/8B | 0/1M). Other findings included tremor (1/7B | 1/1M), abnormal brain imaging (2/6B / ?/1M), kyphosis/scoliosis (4/8B | 0/1M), respiratory distress (1/8B | 0/1M).

NEMF (Rqc2 in yeast) encodes the nuclear export mediator factor, a component of the Ribosome-associated Quality Control (RCQ) complex which is involved in proteolytic targeting of incomplete polypeptides prodduced by ribosome stalling. NEMF facilitates the recruitment of E3 ligase Listerin (LTN1) which ubiquitinates nascent polypeptide chains for subsequent proteasomal degradation.

The author provide evidence that mice homozygous for Nemf missense mutations display progressive motor phenotypes, exhibit neurogenic atrophy and progressive axonal degeneration. A further NEMF-null mouse model displayed more severe phenotype (with heterozygous mice being unaffected).

Equivalent mutations (of those in the above mouse model) in yeast (Rqc2) were shown to interfere with its ability to modify aberrant translation products with C-terminal tails which assist RQC-mediated protein degradation.

Mutation of Ltn1 (belonging to the same protein control pathway) has been also shown to lead to neurodegeneration im mice.

Overall NEMF is thought to play a role in neuronal translational homeostasis and the disorder to be mediated by dysfunction of the RQC pathway (normally protecting neurons against degeneration).
Intellectual disability syndromic and non-syndromic v0.3051 SETD1A Zornitza Stark gene: SETD1A was added
gene: SETD1A was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SETD1A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SETD1A were set to 31197650; 32346159
Phenotypes for gene: SETD1A were set to Epilepsy, early-onset, with or without developmental delay, MIM# 618832
Review for gene: SETD1A was set to GREEN
Added comment: 19 unrelated individuals reported with de novo variants in this gene and a neurodevelopmental phenotype, primarily manifesting and ID and seizures. LOF mechanism supported by functional data. Three mouse models.

SNPs in this gene have also been associated with risk of developing schizophrenia.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3050 HPDL Zornitza Stark changed review comment from: Intellectual impairment is variable, ranging from poor visual contact with inability to walk or speak to milder intellectual disability with the ability to say some words.; to: 17 individuals from 13 families, with a spectrum of neurologic impairment ranging from a severe congenital form without any neurological development (n = 2/17, 12%) to infantile-onset presentations (n = 10/17, 59%) with moderate to severe neurodevelopmental issues, partly with a pathology reminiscent of mitochondrial disease (Leigh-like syndrome), to juvenile-onset spastic paraplegia (n = 5/17, 29%).

Intellectual impairment is variable, ranging from poor visual contact with inability to walk or speak to milder intellectual disability with the ability to say some words.

Frequently observed additional clinical findings included chronic progression of neurological signs (n = 16/17, 94%), microcephaly (n = 9/16, 56%), and seizures/epilepsy (n = 9/17, 53%). Other relevant clinical findings were visual disturbances/strabismus (n = 9/17, 53%) and loss of developmental milestones (n = 6/17, 35%).

Acute central respiratory failure leading to life-threatening events requiring partly mechanically assisted ventilation occurred in half of individuals with infantile presentation (n = 5/10, 50%), respectively one third of all individuals (n = 5/17, 29%).

Demyelinating neuropathy was present in three individuals (n = 3/11, 27%), with reduced sensory nerve conduction velocity (NCV) in all and severely reduced motor NCV in one.
Intellectual disability syndromic and non-syndromic v0.3049 PRKD1 Zornitza Stark Added comment: Comment when marking as ready: Literature reviewed again: ID/DD reported in 2/5 but unclear at present if this is part of the phenotype given low number of affected individuals.
Intellectual disability syndromic and non-syndromic v0.3013 ZMYM2 Konstantinos Varvagiannis gene: ZMYM2 was added
gene: ZMYM2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ZMYM2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: ZMYM2 were set to 32891193
Phenotypes for gene: ZMYM2 were set to Abnormality of the urinary system; Global developmental delay; Intellectual disability; Microcephaly; Abnormality of the cardiovascular system; Autism; Seizures; Abnormality of the head or neck; Abnormality of the nail; Small hand; Short foot; Clinodactyly
Penetrance for gene: ZMYM2 were set to unknown
Review for gene: ZMYM2 was set to AMBER
Added comment: Heterozygous pathogenic (pLoF) ZMYM2 variants have been reported in individuals with syndromic presentation including CAKUT (in several cases) and variable neurological manifestations among extra-renal features. DD and ID were reported in some of the families described to date as summarized below. You might consider inclusion with green/amber rating in the ID panel and green in the panel for CAKUT.

--

Connaughton et al (2020 - PMID: 32891193) report on 19 individuals (from 15 unrelated families) with heterozygous pathogenic ZMYM2 variants. [Article not reviewed in detail].

Affected individuals from 7 families presented with CAKUT while all of them displayed extra-renal features. Neurological manifestations were reported in 16 individuals from 14 families (data not available for 1 fam), among others hypotonia (3/14 fam), speech delay (4/14 fam), global DD (9/14 fam), ID (4/14 fam), microcephaly (4/14 fam). ASD was reported in 4 fam (4 indiv). Seizures were reported in 2 fam (2 indiv). Variable other features included cardiac defects, facial dysmorphisms, small hands and feet with dys-/hypo-plastic nails and clinodactyly.

14 pLoF variants were identified, in most cases as de novo events (8 fam). In 2 families the variant was inherited from an affected parent. Germline mosaicism occurred in 1 family.

The human disease features were recapitulated in a X. tropicalis morpholino knockdown, with expression of truncating variants failing to rescue renal and craniofacial defects. Heterozygous Zmym2-deficient mice also recapitulated the features of CAKUT.

ZMYM2 (previously ZNF198) encodes a nuclear zinc finger protein localizing to the nucleus (and PML nuclear body).

It has previously been identified as transcriptional corepressor interacting with nuclear receptors and the LSD1-CoREST-HDAC1 complex. It has also been shown to interact with FOXP transcription factors.

The authors provide evidence for loss of interaction of the truncated ZMYM2 with FOXP1 (mutations in the latter having recently been reported in syndromic CAKUT).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.3012 NEMF Zornitza Stark gene: NEMF was added
gene: NEMF was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: NEMF was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NEMF were set to 32934225
Phenotypes for gene: NEMF were set to Intellectual disability; neuropathy
Review for gene: NEMF was set to GREEN
Added comment: Nine individuals from 7 unrelated families reported with a mixed CNS/PNS phenotype. 7/9 had ID, 4/9 had formal assessments demonstrating axonal neuropathy, 3/9 had ataxia; muscular atrophy, hypotonia, respiratory distress, scoliosis also described in some. Three independently generated mouse models had progressive motor neuron degeneration.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2982 SLC16A2 Zornitza Stark changed review comment from: Allan-Herndon-Dudley syndrome (AHDS) is an X-linked condition characterized by severely impaired intellectual development, dysarthria, athetoid movements, muscle hypoplasia, and spastic paraplegia. There is large phenotypic interfamilial and intrafamilial variability.; to: Allan-Herndon-Dudley syndrome (AHDS) is an X-linked condition characterized by severely impaired intellectual development, dysarthria, athetoid movements, muscle hypoplasia, and spastic paraplegia. There is large phenotypic interfamilial and intrafamilial variability. In a recent review of 24 affected individuals (PMID 31410843), 16 presented with profound developmental delay, three had severe intellectual disability with poor language and walking with an aid, four had moderate intellectual disability with language and walking abilities, and one had mild intellectual disability with hypotonia. Overall, eight had learned to walk, all had hypotonia, 17 had spasticity, 18 had dystonia, 12 had choreoathetosis, 19 had hypomyelination, and 10 had brain atrophy. Kyphoscoliosis (n=12), seizures (n=7), and pneumopathies (n=5) were the most severe complications.
Intellectual disability syndromic and non-syndromic v0.2960 FITM2 Zornitza Stark gene: FITM2 was added
gene: FITM2 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: FITM2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FITM2 were set to 28067622; 30214770; 30288795
Phenotypes for gene: FITM2 were set to Siddiqi syndrome MIM#618635
Review for gene: FITM2 was set to GREEN
Added comment: Autosomal recessive condition characterised by global developmental delay, early-onset progressive sensorineural hearing impairment, regression of motor skills, dystonia, poor overall growth, and low body mass index (BMI). More variable features may include ichthyosis-like skin abnormalities or sensory neuropathy. 7 individuals from three unrelated families reported, supportive Drosophila model.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2958 FDXR Zornitza Stark changed review comment from: ID is not part of the phenotype.; to: Bi-allelic variants in FDXR cause an autosomal recessive neurologic disorder characterised by onset of visual and hearing impairment in the first or second decades. Two individuals described with a more severe phenotype, including one with intellectual disability.
Intellectual disability syndromic and non-syndromic v0.2954 TRIP13 Zornitza Stark changed review comment from: Early-onset Wilms tumor and either aneuploidy or premature chromatid separation in cells. Some individuals described as having additional developmental features, such as microcephaly, growth retardation, or developmental delay but these are highly variable.; to: Early-onset Wilms tumor and either aneuploidy or premature chromatid separation in cells. Some individuals described as having additional developmental features, such as microcephaly, growth retardation, or developmental delay but these are highly variable. Also note 5/6 reported families had the same homozygous variant, p.Arg354X, suggestive of founder effect.
Intellectual disability syndromic and non-syndromic v0.2949 DHX37 Naomi Baker gene: DHX37 was added
gene: DHX37 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: DHX37 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: DHX37 were set to PMID: 26539891; 31256877
Phenotypes for gene: DHX37 were set to Neurodevelopmental disorder with brain anomalies and with or without vertebral or cardiac anomalies, MIM#618731
Review for gene: DHX37 was set to GREEN
Added comment: Two unrelated patients from consanguineous families reported with biallelic missense variants. Clinical presentation included severe microcephaly, DD/ID, and cortical atrophy (PMID: 26539891).

Five individuals who share a phenotype of DD and/or ID and CNS dysfunction. Three out of five individuals also have scoliosis, and two have cardiac phenotypes (PMID: 31256877). Three of the patients had bialleleic missense variants, while two patients had a de novo monoallelic missense variant.

Note that OMIM lists inheritance as biallelic, however two monoallelic cases reportes.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2939 TRAPPC2L Zornitza Stark gene: TRAPPC2L was added
gene: TRAPPC2L was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TRAPPC2L was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TRAPPC2L were set to 30120216; 32843486
Phenotypes for gene: TRAPPC2L were set to Encephalopathy, progressive, early-onset, with episodic rhabdomyolysis, 618331
Review for gene: TRAPPC2L was set to AMBER
Added comment: Total of three families, but two share a founder variant, and there are some disparities between the clinical presentations reported in the two publications. Rating Amber as additional cases required to delineate the genotype-phenotype relationship. PMID: 30120216 (2018) - Two unrelated probands with an identical homozygous missense (c.109G>T, p.Asp37Tyr) variant in TRAPPC2L. Both individuals presented neurodevelopmental delay, febrile illness-induced encephalopathy, and episodic rhabdomyolysis, followed by developmental arrest, seizures and tetraplegia. The variant segregated with the phenotype in each family, and haplotype analysis suggested a founder effect. The mutant protein was expressed in patient fibroblasts, but displayed membrane trafficking delays. Studies in yeast showed that the variant impaired interaction with TRAPPC10, and increased levels of the active RAB11. PMID: 32843486 (2020) - In an Ashkenazi Jewish family with three affected sibs with GDD/ID, WGS revealed a segregating homozygous missense variant (c.5G>C, p.Ala2Gly) in the TRAPPC2L gene. No seizures, brain MRI abnormalities, or illness provoked regression were documented in this family. Comparable to the previous study, the variant resulted in delayed ER-to-Golgi trafficking and elevated levels of active RAB11. Studies using yeast and in vitro binding, showed that the variant disrupted interaction with another core TRAPP protein, TRAPPC6a.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2920 CTNND1 Zornitza Stark gene: CTNND1 was added
gene: CTNND1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CTNND1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CTNND1 were set to 28301459; 32196547
Phenotypes for gene: CTNND1 were set to Blepharocheilodontic syndrome 2, MIM# 617681
Review for gene: CTNND1 was set to AMBER
Added comment: 4 individuals from 3 unrelated families with blepharocheilodontic syndrome and mutations in the CTNND1 gene reported originally in PMID 28301459. All had eyelid anomalies, including ectropion of the lower lids, euryblepharon, lagophthalmia, and distichiasis. In addition, all 4 showed typical facial dysmorphism with hypertelorism, flat face, and high forehead, and all had conical teeth and tooth agenesis. Three had cleft lip and palate, 3 had hair anomalies, and 1 had hypothyroidism due to hypoplasia or aplasia of the thyroid gland. None of the patients exhibited anal atresia or neural tube defects.

PMID: 32196547 - Alharatani et al 2020 - report an expanded phenotype for CTNND1 patients. They report 13 individuals from nine families with novel protein-truncating variants in CTNND1 identified by WES. The mutations were not previously described in blepharocheilodontic (BCD), orofacial cleft cases nor in gnomAD. 8 patients had de novo variants, 2 inherited from affected parents, 2 participants inherited a variant from a parent with a mild phenotype. 8/13 patients showed cleft palate. Additional phenotypic features seen include mild limb phenotypes (9/13), cardiovascular anomalies (6/13) and Developmental delay and other neurodevelopmental problems (8/13).

This more recent publication suggests a broader phenotype associated with CTNND1 variants including dev delay, ADHD/ASD, behavioural issues. Unclear from description whether significant ID present.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2874 PDE2A Zornitza Stark gene: PDE2A was added
gene: PDE2A was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: PDE2A was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PDE2A were set to 32467598; 32196122; 29392776
Phenotypes for gene: PDE2A were set to Paroxysmal dyskinesia
Review for gene: PDE2A was set to AMBER
Added comment: Four unrelated families reported with childhood-onset refractory paroxysmal dyskinesia with cognitive impairment, sometimes associated with choreodystonia and interictal baseline EEG abnormalities or epilepsy. One of the reports characterises the disorder as 'Rett-like'. Unclear at this time what proportion of affected individuals have ID as part of the phenotype.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2849 LMBRD2 Konstantinos Varvagiannis gene: LMBRD2 was added
gene: LMBRD2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: LMBRD2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: LMBRD2 were set to 32820033; https://doi.org/10.1101/797787
Phenotypes for gene: LMBRD2 were set to Global developmental delay; Intellectual disability; Microcephaly; Seizures; Abnormality of nervous system morphology; Abnormality of the eye
Penetrance for gene: LMBRD2 were set to unknown
Mode of pathogenicity for gene: LMBRD2 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: LMBRD2 was set to AMBER
Added comment: You may consider inclusion with green (13 individuals with dn missense SNVs overall, overlapping features for 10 with available phenotype / a recurring variant has been identified in 2 different studies) or amber rating (role of the gene not known, no variant studies, animal model probably not available).

► Malhotra et al (2020 - PMID: 32820033) report on 10 unrelated individuals with de novo missense LMBRD2 variants.

Features included DD (9/10), ID (6/8 of relevant age), microcephaly (7/10), seizures (5/10 - >=3 different variants), structural brain abnormalities (e.g. thin CC in 6/9), highly variable ocular abnormalities (5/10) and dysmorphic features in some (7/10 - nonspecific).

All had variable prior non-diagnostic genetic tests (CMA, gene panel, mendeliome, karyotype). WES/WGS revealed LMBRD2 missense variants, in all cases de novo. A single individual had additional variants with weaker evidence of pathogenicity.

5 unique missense SNVs and 2 recurrent ones (NM_001007527:c.367T>C - p.Trp123Arg / c.1448G>A - p.Arg483His) were identified. These occurred in different exons. Variants were not present in gnomAD and all had several in silico predictions in favor of a deleterious effect.

There was phenotypic variability among individuals with the same variant (e.g. seizures in 1/3 and microchephaly in 2/3 of those harboring R483H).

The gene has a pLI of 0 (although o/e ranges from 0.23 to 0.55), %HI of 15.13 and z-score of 2.27. The authors presume that haploinsufficiency may not apply, and consider a gain-of-function/dominant-negative effect more likely.

As the authors comment LMBRD2 (LMBR1 domain containing 2) encodes a membrane bound protein with poorly described function. It is widely expressed across tissues with notable expression in human brain (also in Drosophila, or Xenopus laevis). It displays high interspecies conservation.

It has been suggested (Paek et al - PMID: 28388415) that LMBRD2 is a potential regulator of β2 adrenoreceptor signalling through involvement in GPCR signalling.

► Kaplanis et al (2020 - https://doi.org/10.1101/797787) in a dataset of 31058 parent-offspring trios (WES) previously identified 3 individuals with developmental disorder, harboring c.1448G>A - p.Arg483His. These individuals (1 from the DDD study, and 2 GeneDx patients) appear in Decipher. [ https://decipher.sanger.ac.uk/ddd/research-variant/40e17c78cc9655a6721006fc1e0c98db/overview ]. The preprint by Kaplanis et al is cited by Malhotra et al, with Arg483His reported in 6 patients overall in both studies.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2840 TAOK1 Sue White commented on gene: TAOK1: Monoallelic de novo variants reported in 8 individuals with nonspecific phenotype of intellectual disability and hypotonia. Most were LOF, 2 missense. 3 had macrocephaly.
Intellectual disability syndromic and non-syndromic v0.2836 TAF1C Konstantinos Varvagiannis gene: TAF1C was added
gene: TAF1C was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TAF1C was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TAF1C were set to 32779182
Phenotypes for gene: TAF1C were set to Global developmental delay; Intellectual disability; Spasticity; Strabismus; Seizures; Abnormality of nervous system morphology
Penetrance for gene: TAF1C were set to Complete
Review for gene: TAF1C was set to AMBER
Added comment: Knuutinen et al (2020 - PMID: 32779182) report on 2 individuals from 2 consanguineous families, homozygous for TAF1C missense variants.

Both presented with an early onset neurological phenotype with severe global DD, ID (2/2 - moderate and profound), spasticity (2/2), ophthalmic findings (strabismus 2/2, nystagmus 1/2). Epilepsy, abnormal brain MRI (cerebral and cerebellar atrophy and white matter hyperintensities) as well and additional findings were reported in one (always the same individual).

Following a normal CMA, exome in the first case revealed a homozygous missense SNV (NM_005679.3:c.1165C>T / p.Arg389Cys) supported by in silico predictions. mRNA and protein levels were substantially reduced in fibroblasts from this subject. Only the patient and parents were tested for the variant but not 3 unaffected sibs (fig1).

The second individual was homozygous for another missense variant (p.Arg405Cys) also supported by in silico predictions. The girl was the single affected person within the family with an unaffected sib and parents heterozygous for the variant. Several other unaffected relatives in the extended pedigree were either carriers for this variant or homozygous for the wt allele.

TAF1C encodes the TATA-box binding protein associated factor (TAF) RNA polymerase I subunit.

RNA polymerase I (Pol I) transcribes genes to produce rRNA. For Pol I to initiate transcription, two transcription factors are required : UBF (upstream binding factor encoded by UBTF) and SL1 (selectivity factor 1). The latter is formed by TBP (TATA-binding protein) and 3 Pol I-specific TBP-associated factors (TAFs).

A recurrent de novo missense variant in UBTF (encoding the other Pol I transcription factor) causes a disorder with highly similar features. The specific variant acts through a gain-of-function mechanism (and not by LoF which appears to apply for TAF1C based on expression data).

The authors hypothesize that altered Pol I activity and resulting ribosomal stress could cause the microcephaly and leukodystrophy (both reported in 1 - the same - individual).

As a result, TAF1C may be considered for inclusion in the ID panel with amber rating pending further evidence.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2833 FAM50A Konstantinos Varvagiannis gene: FAM50A was added
gene: FAM50A was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: FAM50A was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: FAM50A were set to 32703943
Phenotypes for gene: FAM50A were set to Mental retardation syndrome, X-linked, Armfield type (MIM #300261)
Penetrance for gene: FAM50A were set to unknown
Review for gene: FAM50A was set to GREEN
Added comment: Lee et al (2020 - PMID: 32703943) provide evidence that Armfield X-Linked intellectual disability syndrome is caused by monoallelic FAM50A pathogenic variants. The current review is based only on this reference.

The authors provide clinical details on 6 affected individuals from 5 families.

Features included postnatal growth delay, DD and ID (6/6 - also evident for those without formal IQ assesment), seizures (3/6 from 2 families), prominent forehead with presence of other facial features and variable head circumference (5th to >97th %le), ocular anomalies (5/6 - strabismus/nystagmus/Axenfeld-Rieger), cardiac (3/6 - ASD/Fallot) and genitourinary anomalies (3/6).

In the first of these families (Armfield et al 1999 - PMID: 10398235), linkage analysis followed by additional studies (Sanger, NGS of 718 genes on chrX, X-exome NGS - several refs provided) allowed the identification of a FAM50A variant. Variants in other families were identified by singleton (1 fam) or trio-ES (3 fam).

In affected individuals from 3 families, the variant had occurred de novo. Carrier females in the other families were unaffected (based on pedigrees and/or the original publication). XCI was rather biased in most obligate carrier females from the 1st family (although this ranged from 95:5 to 60:40).

Missense variants were reported in all affected subjects incl. Trp206Gly, Asp255Gly, Asp255Asn (dn), Glu254Gly (dn), Arg273Trp (dn) (NM_004699.3).

Previous studies have demonstrated that FAM50A has ubiquitous expression in human fetal and adult tissues (incl. brain in fetal ones).

Immunostaining suggests a nuclear localization for the protein (NIH/3T3 cells). Comparison of protein levels in LCLs from affected males and controls did not demonstrate significant differences. Protein localization for 3 variants (transfection of COS-7 cells) was shown to be similar to wt.

Complementation studies in zebrafish provided evidence that the identified variants confer partial loss of function (rescue of the morpholino phenotype with co-injection of wt but not mt mRNA). The zebrafish ko model seemed to recapitulate the abnormal development of cephalic structures and was indicative of diminished/defective neurogenesis. Transcriptional dysregulation was demonstrated in zebrafish (altered levels and mis-splicing). Upregulation of spliceosome effectors was demonstrated in ko zebrafish.

Similarly, mRNA expression and splicing defects were demonstrated in LCLs from affected individuals. FAM50A pulldown followed by mass spectrometry in transfected HEK293T cells demonstrated enrichment of binding proteins involved in RNA processing and co-immunoprecipitation assays (transfected U-87 cells) suggested that FAM50A interacts with spliceosome U5 and C-complex proteins.

Overall aberrant spliceosome C-complex function is suggested as the underlying pathogenetic mechanism.

Several other neurodevelopmental syndromes are caused by variants in genes encoding C-complex affiliated proteins (incl. EFTUD2, EIF4A3, THOC2, etc.).

Please consider inclusion in the ID panel with green rating and epilepsy panel with amber (seizures in individuals from 2 families).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2828 HYLS1 Zornitza Stark changed review comment from: Given that generally most affected individuals die in utero or shortly after birth, this is probably not the right panel for this gene.; to: Single family reported with Joubert phenotype, generally most affected individuals with hydrolethalus die in utero or shortly after birth so would not present with ID. Note founder variant in Finnish population associated with the hydrolethalus phenotype.
Intellectual disability syndromic and non-syndromic v0.2813 PIGQ Konstantinos Varvagiannis gene: PIGQ was added
gene: PIGQ was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PIGQ was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PIGQ were set to 32588908; 24463883; 25558065; 31148362
Phenotypes for gene: PIGQ were set to Epileptic encephalopathy, early infantile, 77 (MIM #618548)
Penetrance for gene: PIGQ were set to Complete
Review for gene: PIGQ was set to GREEN
Added comment: Homozygous or compound heterozygous mutations in PIGQ cause Epileptic encephalopathy, early infantile, 77 (MIM #618548).

Johnstone et al (2020 - PMID: 32588908) describe the phenotype of 7 children (from 6 families) with biallelic PIGQ pathogenic variants. The authors also review the phenotype of 3 subjects previously reported in the literature (by Martin et al, Alazami et al, Starr et al - respective PMIDs: 24463883, 25558065, 31148362).

Affected individuals displayed severe to profound global DD/ID and seizures with onset in the first year of life. There were variable other features incl. - among others - genitourinary, cardiac, skeletal, ophthalmological anomalies, gastrointestinal issues. Within the cohort there was significant morbidity/mortality.

PIGQ encodes phosphatidylinositol glycan anchor biosynthesis class Q protein, playing a role (early) in the biosynthesis of the GPI-anchor. Several genes in the GPI biosynthesis pathway cause multi-system disease with DD/ID and seizures. Flow cytometry has been used in individuals with PIGQ-related disorder. Serum ALP was elevated in some (4) although - as the authors comment - elevations are more typical in disorders affecting later steps of GPI biosynthesis.

More than 10 variants have been reported to date (missense / pLoF).

Overall PIGQ can be considered for green rating in both ID and epilepsy gene panels.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2807 PJA1 Zornitza Stark gene: PJA1 was added
gene: PJA1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PJA1 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: PJA1 were set to 32530565
Phenotypes for gene: PJA1 were set to Intellectual disability; trigonocephaly
Review for gene: PJA1 was set to AMBER
Added comment: Recurrent variant, p.Arg376Cys, reported in 7 Japanese individuals, supportive mouse model. Individuals shared a common haplotype, suggestive of founder effect.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2806 SCAF4 Crystle Lee gene: SCAF4 was added
gene: SCAF4 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert Review
Mode of inheritance for gene: SCAF4 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: SCAF4 were set to 32730804
Phenotypes for gene: SCAF4 were set to Mild intellectual disability; seizures; behavioral abnormalities
Review for gene: SCAF4 was set to GREEN
Added comment: > 5 variants reported in individuals with variable neurodevelopmental disorder characterized by mild intellectual disability, seizures, behavioral abnormalities, and various skeletal and structural anomalies.
Sources: Expert Review
Intellectual disability syndromic and non-syndromic v0.2805 NARS Konstantinos Varvagiannis changed review comment from: [Please note that HGNC Approved Gene Symbol for this gene is NARS1]

Manole et al (2020 - PMID: 32738225) provide evidence that both biallelic and monoallelic (de novo) pathogenic NARS1 variants cause a neurodevelopmental disorder. In total 32 individuals from 21 families are reported, with biallelic variants identified in individuals from 13 families and de novo in 8 families.

Similar features were reported for AR/AD occurrences of the disorder and included of microcephaly (90% - most often primary), epilepsy (23/32 or 74% - variable semiology incl. partial/myoclonic/generalized tonic-clonic seizures), DD and ID (as a universal feature), abnormal tone in several (hypotonia/spasticity), ataxia, demyelinating peripheral neuropathy (in 3 or more for each inheritance mode - or a total of 25%). Some individuals had dysmorphic features.

NARS1 encodes an aminoacyl-tRNA synthetase (ARS) [asparaginyl-tRNA synthetase 1]. Aminoacyl-tRNA synthetases constitute a family of enzymes catalyzing attachment of amino-acids to their cognate tRNAs. As the authors comment, mutations in genes encoding several other ARSs result in neurological disorders ranging from peripheral neuropathy to severe multi-systemic NDD. Dominant, recessive or both modes for inheritance for mutations in the same gene (e.g. AARS1, YARS1, MARS1, etc) have been reported.

Some variants were recurrent, e.g. the c.1600C>T / p.Arg534* which occurred in 6 families as a de novo event or c.1633C>T p.Arg545Cys (homozygous in 6 families). 3 different variants were reported to have occured de novo (c.965G>T - p.Arg322Leu, c.1525G>A - p.Gly509Ser, p.Arg534*) with several other variants identified in hmz/compound htz individuals. A single SNV (c.1067A>C - p.Asp356Ala) was suggested to be acting as modifier and pathogenic only when in trans with a severe variant. [NM_004539.4 used as RefSeq for all].

The authors provide several lines of evidence for a partial loss-of-function effect (e.g. reduction in mRNA expression, enzyme levels and activity in fibroblasts or iNPCs) underlying pathogenicity of the variants identified in individuals with biallelic variants. A gain-of-function (dominant-negative) effect is proposed for de novo variants (such effect also demonstrated for the p.Arg534* in a zebrafish model).

As also Manole et al suggest, NARS1 can be considered for inclusion in gene panels for DD/ID, epilepsy and/or demyelinating neuropathy.
Sources: Literature; to: [Please note that HGNC Approved Gene Symbol for this gene is NARS1]

Manole et al (2020 - PMID: 32738225) provide evidence that both biallelic and monoallelic (de novo) pathogenic NARS1 variants cause a neurodevelopmental disorder. In total 32 individuals from 21 families are reported, with biallelic variants identified in individuals from 13 families and de novo in 8 families.

Similar features were reported for AR/AD occurrences of the disorder and included microcephaly (90% - most often primary), epilepsy (23/32 or 74% - variable semiology incl. partial/myoclonic/generalized tonic-clonic seizures), DD and ID (as a universal feature), abnormal tone in several (hypotonia/spasticity), ataxia, demyelinating peripheral neuropathy (in 3 or more for each inheritance mode - or a total of 25%). Some individuals had dysmorphic features.

NARS1 encodes an aminoacyl-tRNA synthetase (ARS) [asparaginyl-tRNA synthetase 1]. Aminoacyl-tRNA synthetases constitute a family of enzymes catalyzing attachment of amino-acids to their cognate tRNAs. As the authors comment, mutations in genes encoding several other ARSs result in neurological disorders ranging from peripheral neuropathy to severe multi-systemic NDD. Dominant, recessive or both modes for inheritance for mutations in the same gene (e.g. AARS1, YARS1, MARS1, etc) have been reported.

Some variants were recurrent, e.g. the c.1600C>T / p.Arg534* which occurred in 6 families as a de novo event or c.1633C>T p.Arg545Cys (homozygous in 6 families). 3 different variants were reported to have occured de novo (c.965G>T - p.Arg322Leu, c.1525G>A - p.Gly509Ser, p.Arg534*) with several other variants identified in hmz/compound htz individuals. A single SNV (c.1067A>C - p.Asp356Ala) was suggested to be acting as modifier and pathogenic only when in trans with a severe variant. [NM_004539.4 used as RefSeq for all].

The authors provide several lines of evidence for a partial loss-of-function effect (e.g. reduction in mRNA expression, enzyme levels and activity in fibroblasts or iNPCs) underlying pathogenicity of the variants identified in individuals with biallelic variants. A gain-of-function (dominant-negative) effect is proposed for de novo variants (such effect also demonstrated for the p.Arg534* in a zebrafish model).

As also Manole et al suggest, NARS1 can be considered for inclusion in gene panels for DD/ID, epilepsy and/or demyelinating neuropathy.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2805 NARS Konstantinos Varvagiannis gene: NARS was added
gene: NARS was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: NARS was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: NARS were set to 32738225
Phenotypes for gene: NARS were set to Abnormal muscle tone; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Ataxia; Abnormality of the face; Demyelinating peripheral neuropathy
Penetrance for gene: NARS were set to Complete
Review for gene: NARS was set to GREEN
Added comment: [Please note that HGNC Approved Gene Symbol for this gene is NARS1]

Manole et al (2020 - PMID: 32738225) provide evidence that both biallelic and monoallelic (de novo) pathogenic NARS1 variants cause a neurodevelopmental disorder. In total 32 individuals from 21 families are reported, with biallelic variants identified in individuals from 13 families and de novo in 8 families.

Similar features were reported for AR/AD occurrences of the disorder and included of microcephaly (90% - most often primary), epilepsy (23/32 or 74% - variable semiology incl. partial/myoclonic/generalized tonic-clonic seizures), DD and ID (as a universal feature), abnormal tone in several (hypotonia/spasticity), ataxia, demyelinating peripheral neuropathy (in 3 or more for each inheritance mode - or a total of 25%). Some individuals had dysmorphic features.

NARS1 encodes an aminoacyl-tRNA synthetase (ARS) [asparaginyl-tRNA synthetase 1]. Aminoacyl-tRNA synthetases constitute a family of enzymes catalyzing attachment of amino-acids to their cognate tRNAs. As the authors comment, mutations in genes encoding several other ARSs result in neurological disorders ranging from peripheral neuropathy to severe multi-systemic NDD. Dominant, recessive or both modes for inheritance for mutations in the same gene (e.g. AARS1, YARS1, MARS1, etc) have been reported.

Some variants were recurrent, e.g. the c.1600C>T / p.Arg534* which occurred in 6 families as a de novo event or c.1633C>T p.Arg545Cys (homozygous in 6 families). 3 different variants were reported to have occured de novo (c.965G>T - p.Arg322Leu, c.1525G>A - p.Gly509Ser, p.Arg534*) with several other variants identified in hmz/compound htz individuals. A single SNV (c.1067A>C - p.Asp356Ala) was suggested to be acting as modifier and pathogenic only when in trans with a severe variant. [NM_004539.4 used as RefSeq for all].

The authors provide several lines of evidence for a partial loss-of-function effect (e.g. reduction in mRNA expression, enzyme levels and activity in fibroblasts or iNPCs) underlying pathogenicity of the variants identified in individuals with biallelic variants. A gain-of-function (dominant-negative) effect is proposed for de novo variants (such effect also demonstrated for the p.Arg534* in a zebrafish model).

As also Manole et al suggest, NARS1 can be considered for inclusion in gene panels for DD/ID, epilepsy and/or demyelinating neuropathy.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2804 ZNF407 Konstantinos Varvagiannis gene: ZNF407 was added
gene: ZNF407 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ZNF407 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: ZNF407 were set to 24907849; 32737394; 23195952
Phenotypes for gene: ZNF407 were set to Global developmental delay; Intellectual disability
Penetrance for gene: ZNF407 were set to unknown
Review for gene: ZNF407 was set to AMBER
Added comment: You may consider inclusion of this gene probably with amber rating (or green if the evidence for biallelic variants is considered sufficient).

Biallelic variants:

- Kambouris et al. (2014 - PMID: 24907849) described 2 brothers with severe DD and ID, born to first cousin parents. Homozygosity mapping, following other non-diagnostic investigations (incl. aCGH), revealed 4 major homozygosity intervals. Exome sequencing in one identified 5 variants within these intervals, ZNF407 (c.5054C>G, p.Ser1685Trp) being the best candidate, supported also by segregation studies. The authors commented that zinc finger proteins act as transcriptional regulators, with mutations in genes encoding for other zinc finger proteins interfering with normal brain development.

- Zahra et al. (2020 - PMID: 32737394) report on 7 affected individuals (from 3 families) homozygous or compound heterozygous for ZNF407 variants. Features included hypotonia, DD and ID (in all) and variable occurrence of short stature (6/6), microcephaly (in at least 5), behavioural, visual problems and deafness. Linkage analysis in the first family revealed a 4.4 Mb shared homozygosity region and exome (30x) revealed a 3-bp duplication, confirmed by Sanger sequencing and segregating with the disease (NM_001146189:c.2814_2816dup, p.Val939dup). Affected subjects from the 2 other families were each found to be homozygous (c.2405G>T) or compound heterozygous (c.2884C>G, c.3642G>C) for other variants. Segregation was compatible in all families. Other studies were not performed. The authors comment than only the 3-bp duplication fullfilled ACMG criteria for classification as LP, the other variants being all formally classified as VUS (also due to in silico predictions predicting a LB effect). In addition, while several features such as DD/ID and short stature appeared to be frequent among all patients reported, Zahra et all comment that there was partial clinical overlap with the sibs described by Kambouris et al (additional variants?).


Monoallelic disruption of ZNF407:

- Ren et al (2013 - PMID: 23195952) described an 8 y.o. boy with ID and ASD. The boy was found to harbor a de novo translocation between chromosomes 3 and 18 [46,XY,t(3;18)(p13;q22.3)]. Array CGH did not reveal any P/LP CNV. Delineation of the breakpoints (FISH, long-range PCR) revealed that the chr18 breakpoint disrupted intron 3 of ZNF407 (isoform 1) with the other breakpoint within a gene-free region of exon 3. There was a loss of 4-8 nt in chr18 and 2-6 in chr3. Sequencing of ZNF407 did not reveal additional variants. RNA isolation in blood followed by RT-PCR studied expression of all 3 ZNF407 isoforms (the intronic region being shared by isoforms 1 and 2). Expression of isoform 1 was shown to be significantly reduced compared to controls. Isoform 2 was undetectable (in blood) while isoform 3 expression was similar to controls. Sequencing of 105 additional patients with similar clinical presentation (ID & ASD) revealed 2 further individuals with de novo missense variants.

- Based on the discussion by Kambouris et al (PMID: 24907849 - cited literature not here reviewed) ZNF407 may be deleted in patients with congenital aural atresia due to deletion of a critical region of 18q22.3 (though TSHZ1 is responsible for this phenotype) or 18q- although such deletions span several other genes (cited PMID: 16639285). In one case the breakpoint was shown to be disrupting ZNF407 (cited PMID: 24092497).

- The denovo db and Decipher (research variant tab) list few individuals with de novo ZNF407 SNVs although these do not seem to allow conclusions.

https://denovo-db.gs.washington.edu/denovo-db/QueryVariantServlet?searchBy=Gene&target=ZNF407
https://decipher.sanger.ac.uk/search/ddd-research-variants/results?q=znf407
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2803 MAPK1 Konstantinos Varvagiannis gene: MAPK1 was added
gene: MAPK1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: MAPK1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: MAPK1 were set to 32721402
Phenotypes for gene: MAPK1 were set to Global developmental delay; Intellectual disability; Behavioral abnormality; Growth delay; Abnormality of the face; Abnormality of the neck; Abnormality of the cardiovascular system; Abnormality of the skin
Penetrance for gene: MAPK1 were set to unknown
Mode of pathogenicity for gene: MAPK1 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: MAPK1 was set to GREEN
Added comment: Motta et al (2020 - PMID: 32721402) report on 7 unrelated individuals harboring de novo missense MAPK1 pathogenic variants.

The phenotype corresponded to a neurodevelopmental disorder and - as the authors comment - consistently included DD, ID , behavioral problems. Postnatal growth delay was observed in approximately half. Hypertelorism, ptosis, downslant of palpebral fissures, wide nasal bridge as low-set/posteriorly rotated ears were among the facial features observed (each in 3 or more subjects within this cohort). Together with short/webbed neck and abnormalities of skin (lentigines / CAL spots) and growth delay these led to clinical suspicion of Noonan s. or disorder of the same pathway in some. Congenital heart defects (ASD, mitral valve insufficiency, though not cardiomyopathy) occurred in 4/7. Bleeding diathesis and lymphedema were reported only once.

MAPK1 encodes the mitogen-activated protein kinase 1 (also known as ERK2) a serine/threonine kinase of the RAS-RAF-MEK-(MAPK/)ERK pathway.

MAPK1 de novo variants were identified in all individuals following trio exome sequencing (and extensive previous genetic investigations which were non-diagnostic).

The distribution of variants, as well as in silico/vitro/vivo studies suggest a GoF effect (boosted signal through the MAPK cascade. MAPK signaling also upregulated in Noonan syndrome).

The authors comment that screening of 267 additional individuals with suspected RASopathy (without mutations in previously implicated genes) did not reveal other MAPK1 variants.

Overall this gene can be considered for inclusion in the ID panel with green rating.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2790 LARS Konstantinos Varvagiannis gene: LARS was added
gene: LARS was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: LARS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LARS were set to 32699352
Phenotypes for gene: LARS were set to Infantile liver failure syndrome 1, MIM# 615438
Penetrance for gene: LARS were set to Complete
Review for gene: LARS was set to GREEN
Added comment: Please consider inclusion with amber/green rating in the current panel.

Biallelic pathogenic LARS1 variants cause Infantile liver failure syndrome 1, MIM# 615438.

Lenz et al (2020 - PMID: 32699352) review the phenotype of 25 affected individuals from 15 families.

Seizures occurred in 19/24 and were commonly associated with infections. Encephalopathic episodes (in 13 patients) accompanied by seizures up to status epilepticus occurred independently of hepatic decompensation.

In addition 22/24 presented with neurodevelopmental delay. The authors comment that cognitive impairment was present in 13/17 individuals (mild-severe) whereas most presented with learning disabilities.

These patients will most likely investigated for their liver disease (although presentation was highly variable and/or very mild in few).

The gene encodes a cytoplasmic amino-acyl tRNA synthetase (ARS) with neurologic manifestations observed in almost all patients (and seizures / DD and ID common to other disorders due to mutations in other genes encoding for ARSs).

Please note that the HGNC approved symbol for this gene is LARS1.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2783 MORC2 Konstantinos Varvagiannis gene: MORC2 was added
gene: MORC2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: MORC2 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: MORC2 were set to https://doi.org/10.1016/j.ajhg.2020.06.013
Phenotypes for gene: MORC2 were set to Charcot-Marie-Tooth disease, axonal, type 2Z, MIM #616688
Penetrance for gene: MORC2 were set to unknown
Mode of pathogenicity for gene: MORC2 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: MORC2 was set to GREEN
Added comment: The current review is based on a recent report by Sacoto et al (2020 - https://doi.org/10.1016/j.ajhg.2020.06.013).

While several previous studies focused on the phenotype of axonal motor and senory neuropathy in individuals with heterozygous MORC2 pathogenic variants (Charcot-Marie-Tooth disease, axonal, type 2Z, MIM #616688) some of them presented among others with hypotonia, muscle weakness, intellectual disability, microcephaly or hearing loss [refs provided by Sacoto et al - learning disabilities (in some patients) also listed in OMIM's clinical synopsis].

Sacoto et al present a cohort of 20 individuals having genetic testing for developmental delay or growth failure (with a single one for a diagnosis of sensorimotor neuropathy).

Overlapping features included DD, ID (18/20 - mild to severe), short stature (18/20), microcephaly (15/20) and variable craniofacial dysmorphisms. The authors comment that features suggestive of neuropathy (weakness, hyporeflexia, abnormal EMG/NCS) were frequent but not the predominant complaint. EMG/NCS abnormalities were abnormal in 6 out of 10 subjects investigated in this cohort. Other findings included brain MRI abnormalities (12/18 - in 5/18 Leigh-like lesions), hearing loss (11/19) and pigmentary retinopathy in few (5).

Affected subjects were found to harbor in all cases missense variants in the ATPase module of MORC2 [residues 1 to 494 - NM_001303256.1 - the module consists of an ATPase domain (aa 1-265), a transducer S5-like domain (266-494) and a coiled-coiled domain (CC1 - aa 282-361)].

Variants had occured mostly as de novo events although inheritance from a similarly affected parent was also reported.

Some of them were recurring within this cohort and/or the literature eg. c.79G>A/p.Glu27Lys (x5), c.260C>T/p.Ser87Leu (x2), c.394C>T/p.Arg132Cys (4x), c.1164C>G/p.Ser388Arg (x2), c.1181A>G/p.Tyr394Cys (x3).

MORC2 encodes an ATPase involved in chromatin remodeling, DNA repair and transcriptional regulation. Chromatin remodeling and epigenetic silencing by MORC2 is mediated by the HUSH (Human Silencing Hub) complex. Functional studies (MORC2-knockout HeLa cells harboring a HUSH-sensitive GFP reporter were transduced with wt or mt MORC2 followed by measurement of reporter repression) supported the deleterious effect of most variants known at the time (hyperactivation of HUSH-mediating silencing, in line with previous observations).

Overall this gene can be considered for inclusion in the ID panel with green rating. Also other gene panels (e.g. for short stature, microcephaly, hearing loss, pigmentary retinopathy, etc) if it meets the respective criteria for inclusion.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2750 KIF21B Konstantinos Varvagiannis gene: KIF21B was added
gene: KIF21B was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: KIF21B was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: KIF21B were set to 32415109
Phenotypes for gene: KIF21B were set to Global developmental delay; Intellectual disability; Abnormality of brain morphology; Microcephaly
Penetrance for gene: KIF21B were set to unknown
Mode of pathogenicity for gene: KIF21B was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: KIF21B was set to GREEN
Added comment: Asselin et al (2020 - PMID: 32415109) report on 4 individuals with KIF21B pathogenic variants. DD/ID (borderline intellectual functioning to severe ID) was a feature in all. Variable other findings included brain malformations (CCA) and microcephaly. 3 missense variants and a 4-bp insertion were identified, in 3 cases as de novo events while in a single subject the variant was inherited from the father who was also affected. The authors provide evidence for a role of KIF21B in the regulation of processes involved in cortical development and deleterious effect of the missense variants impeding neuronal migration and kinesin autoinhibition. Phenotypes specific to variants (e.g. CCA or microcephaly) were recapitulated in animal models. Missense variants are thought to exert a gain-of-function effect. As commented on, the 4-bp duplication (/frameshift) variant might not be pathogenic. In blood sample from the respective individual, RT-qPCR analysis suggested that haploinsufficiency (NMD) applies. Although Kif21b haploinsufficiency in mice was shown to lead to impaired neuronal positioning, the gene might partially tolerate LoF variants as also suggested by 28 such variants in gnomAD. Homozygous Kif21b ko mice display severe morphological abnormalities, partial loss of commissural fibers, cognitive deficits and altered synaptic transmission (several refs to previous studies provided by the authors).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2750 PAX1 Konstantinos Varvagiannis gene: PAX1 was added
gene: PAX1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature,Radboud University Medical Center, Nijmegen
Mode of inheritance for gene: PAX1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PAX1 were set to 29681087; 23851939; 28657137
Phenotypes for gene: PAX1 were set to Otofaciocervical syndrome 2, 615560
Penetrance for gene: PAX1 were set to Complete
Review for gene: PAX1 was set to AMBER
Added comment: Biallelic PAX1 pathogenic variants cause Otofaciocervical syndrome 2 (OMIM 615560).

Brief review of the literature suggests 3 relevant publications to date (04-07-2020).

2 individuals with DD and ID have been reported (Patil et al, 2018 - PMID: 29681087 and Pohl et al, 2013 - PMID: 23851939). Other subjects reported were only evaluated as newborns(mostly)/infants [Paganini et al, 2017 - PMID: 28657137, Patil et al, 2018 - PMID: 29681087].

While the first report by Pohl et al identified a homozygous missense variant supported by functional studies [NM_006192.5:c.497G>T - p.(Gly166Val)] subsequent ones identified homozygosity for pLoF mutations [Patil et al: NM_006192.4:c.1173_1174insGCCCG / Paganini et al: NM_006192:c.1104C>A - p.(Cys368*)].

As discussed by Pohl et al:

PAX1 encodes a transcription factor with critical role in pattern formation during embryogenesis. Study of the mouse Gly157Val (equivalent to human Gly166Val) Pax1 variant suggested reduced binding affinity (reduced transactivation of a regulatory sequence of the Nkx3-2 promoter) and hypofunctional nature of this variant.

Mouse models seem to recapitulate features of the disorder (skeletal, immunodeficiency) while the role of Pax1 in hearing process was thought to be supported by early expression (P6) in mouse cochlea.

Overall this gene can be considered for inclusion in the ID panel with amber/green rating.
Sources: Literature, Radboud University Medical Center, Nijmegen
Intellectual disability syndromic and non-syndromic v0.2750 TMEM106B Konstantinos Varvagiannis gene: TMEM106B was added
gene: TMEM106B was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TMEM106B was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: TMEM106B were set to 29186371; 29444210; 32595021
Phenotypes for gene: TMEM106B were set to Leukodystrophy, hypomyelinating, 16 (MIM #617964)
Penetrance for gene: TMEM106B were set to Complete
Mode of pathogenicity for gene: TMEM106B was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: TMEM106B was set to GREEN
Added comment: 6 unrelated individuals with Leukodystrophy, hypomyelinating, 16 (MIM #617964) due to a recurrent TMEM106B variant have been reported to date in the literature (Simons et al 2017 - PMID: 29186371, Yan et al 2018 - PMID: 29444210, Ikemoto et al 2020 - PMID: 32595021).

While a 3 y.o. female described by Yan et al had DD (eg sitting at 9m, walking at 25m) with normal cognitive functioning, and a 38 y.o. female had borderline intellectual functioning (IQ 76), 4 affected individuals had ID. Among them, a 19 y.o. male with severe ID was also found to harbor a second de novo possibly damaging USP7 variant. Seizures have been reported in 2 unrelated subjects. [Clinical features are also summarized in table 1 - Ikemoto et al].

All harbored NM_001134232.2(TMEM106B):c.754G>A (p.Asp252Asn) which in almost all cases occurred as a de novo event. In a single case this variant was inherited from a mosaic parent with mild DD in infancy but normal cognition (reported by Simons et al).

As discussed by Ito et al (2018 - PMID: 30643851) the encoded protein is a structural component of the lysosomal membrane, playing a role on lysosome acidification. Acidity of the lysosome mediates multiple aspects of lysosomal function. Ito et al, using patient-derived fibroblasts assessed mRNA and protein levels. These were unaltered compared with controls. While TMEM106B had been previously shown to affect lysosome number, morphology and acidification, Ito et al demonstrated increased number of lysosomes in patient cells as well as impaired acidification compared to controls. As commented lysosomes are required for generation of myelin.

Recurrence of this missense variant, the presence of pLoF TMEM106B variants in gnomAD as well as the phenotypically normal Tmem106b null mice suggest that this variant may have a gain-of-function or dominant negative effect.

Genes for other forms of hypomyelinating lipodystrophy (incl. PLP1) have green rating in the ID panel.

Overall TMEM106B can be considered for the ID panel with green rating and the epilepsy panel with amber rating.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2750 TBC1D2B Konstantinos Varvagiannis gene: TBC1D2B was added
gene: TBC1D2B was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TBC1D2B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TBC1D2B were set to 32623794
Phenotypes for gene: TBC1D2B were set to Global developmental delay; Intellectual disability; Seizures; Gingival overgrowth; Behavioral abnormality; Abnormality of the mandible; Abnormality of brain morphology; Abnormality of the eye; Hearing abnormality
Penetrance for gene: TBC1D2B were set to Complete
Review for gene: TBC1D2B was set to AMBER
Added comment: Harms et al (2020 - PMID: 32623794) report on 3 unrelated individuals with biallelic pLoF TBC1D2B variants.

Features included cognitive impairment (mild ID in one case, regression at the age of 12y in another, hypotonia and delayed milestones in a third aged 8m), seizures (3/3 - variable age of onset) and/or gingival overgrowth (2/3 - prior to initiation of AEDs). Other findings included behavioral abnormalities, mandibular anomalies, abnormal brain imaging and ophthalmologic or (rarely) audiometric evaluations.

All were born to non-consanguineous couples and additional investigations were performed in some.

Variants were identified by WES or trio WGS, with Sanger confirmation/compatible segregation analyses.

In line with the pLoF variants, mRNA studies in fibroblasts from 2 unrelated affected individuals demonstrated significantly reduced (~80-90%) TBC1C2D mRNA levels compared to controls, restored following cycloheximide treatment. Protein was absent in patient fibroblasts.

TBC-domain containing GTPase activating proteins are known as key regulators of RAB GTPase activity. TBC1D2B was shown to colocalize with RAB5-positive endocytic vesicles. CRISPR/Cas9-mediated ko of TBC1D2B in HeLa cells suggested a role in EGF receptor endocytosis and decreased cell viability of TBC1D2B-deficient HeLa cells upon serum deprivation.

Genes encoding other TBC domain-containg GTPase-activating proteins, e.g. TBC1D7 and TBC1D20, TBC1D24 are associated with recessive neurodevelopmental disorders (with ID and/or seizures) and the pathophysiological defect in TBC1D2B-related disorder (deficit in vesicle trafficking and/or cell survival) is proposed to be similar to that of TBC1D24.

Overall this gene can be considered for inclusion with amber/green rating in the ID panel and green in epilepsy panel.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2750 EXOC2 Konstantinos Varvagiannis gene: EXOC2 was added
gene: EXOC2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: EXOC2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EXOC2 were set to 32639540
Phenotypes for gene: EXOC2 were set to Global developmental delay; Intellectual disability; Abnormality of the face; Abnormality of brain morphology
Penetrance for gene: EXOC2 were set to Complete
Review for gene: EXOC2 was set to AMBER
Added comment: Van Bergen et al (2020 - PMID: 32639540) report on 3 individuals from 2 families, harboring biallelic EXOC2 mutations.

Clinical presentation included DD, ID (severe in 2 subjects from fam1, borderline intellectual functioning in fam2), dysmorphic features and brain abnormalities. Cerebellar anomalies were common to all with a molar tooth sign observed in one (1/3). Other findings limited to subjects from one family included acquired microcephaly, congenital contractures, spastic quadriplegia (each observed 2/3).

Previous investigations were in all cases non-diagnostic. WES identified biallelic EXOC2 mutations in all affected individuals.

EXOC2 encodes an exocyst subunit. The latter is an octameric complex, component of the membrane transport machinery, required for tethering and fusion of vesicles at the plasma membrane. As discussed ,vesicle transport is important for the development of brain and the function of neurons and glia. Exocyst function is also important for delivery of Arl13b to the primary cilium (biallelic ARL13B mutations cause Joubert syndrome 8) and ciliogenesis.

Affected subjects from a broader consanguineous family (fam1) were homozygous for a truncating variant. Fibroblast studies revealed mRNA levels compatible with NMD (further restored in presence of CHX) as well as reduced protein levels. The female belonging to the second non-consanguineous family was found to harbor 2 missense variants in trans configuration.

An exocytosis defect was demonstrated in fibroblasts from individuals belonging to both families. Ciliogenesis appeared to be normal, however Arl13b localization/recruitment to the cilia was reduced compared with control cells with the defect rescued upon exogenous expression of wt EXOC2.

Mutations in other genes encoding components of the exocyst complex have been previously reported in individuals with relevant phenotypes (e.g. EXOC8 in a boy with features of Joubert s. or EXOC4 in nephrotic syndrome).

The authors discuss on the essential role of EXOC2 based on model organism studies (e.g. impaired neuronal membrane traffic, failure of neuronal polarization and neuromuscular junction expansion seen in Drosophila Sec5 (EXOC2) null mutants).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2750 CEP120 Konstantinos Varvagiannis gene: CEP120 was added
gene: CEP120 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CEP120 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CEP120 were set to 27208211
Phenotypes for gene: CEP120 were set to Joubert syndrome 31 (MIM 617761); Short-rib thoracic dysplasia 13 with or without polydactyly (MIM 616300)
Penetrance for gene: CEP120 were set to Complete
Review for gene: CEP120 was set to GREEN
Added comment: Pathogenic CEP120 variants have been reported in recessive ciliopathies, namely Short-rib thoracic dysplasia 13 with or without polydactyly (MIM 616300) and Joubert syndrome 31 (MIM 617761).

The former is associated with a severe/lethal outcome (4 unrelated infants described by Shaheen et al 2015 - PMID: 25361962, 2 fetuses reported by Roosing et al 2016 - PMID: 27208211).

Roosing et al however, also provided details on 4 unrelated subjects with Joubert syndrome diagnosis. All presented with a neurologic phenotype of hypotonia, DD, cognitive impairment and exhibited a molar tooth sign.

As a result, this gene can be considered for inclusion in the ID panel with green rating (>3 individuals/variants, consistent ciliopathy phenotype).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2750 ABCA2 Konstantinos Varvagiannis gene: ABCA2 was added
gene: ABCA2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ABCA2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ABCA2 were set to 30237576; 29302074; 31047799
Phenotypes for gene: ABCA2 were set to Intellectual developmental disorder with poor growth and with or without seizures or ataxia, 618808
Penetrance for gene: ABCA2 were set to Complete
Review for gene: ABCA2 was set to GREEN
Added comment: Biallelic pathogenic ABCA2 variants cause Intellectual developmental disorder with poor growth and with or without seizures or ataxia (MIM 618808).

There are 3 relevant publications (01-07-2020) :
- Maddirevula et al [2019 - PMID: 30237576] described briefly 2 unrelated subjects (16-2987, 16DG0071) both DD and seizures among other manifestations.
- Hu et al [2019 - PMID: 29302074] reported 3 sibs (M8600615 - III:1-3) born to consanguineous parents (M8600615 - III:1-3) with DD/ID (formal confirmation of moderate ID, in those (2) evaluated). One also presented with seizures.
- Aslam and Naz [2019 - PMID: 31047799] provided clinical details on 2 siblings born to consanguineous parents. ID was reported for the older sib but was absent in the younger one. Seizures were not part of the phenotype.

All subjects harbored biallelic pLoF variants.

N.B. : Steinberg et al [2015 - PMID: 25773295], within a cohort of patients with ALS, identified one with biallelic ABCA2 variants. As however Aslam and Naz comment, this person harbored a single pathogenic variant, with a second one rather unlikely to be pathogenic due to high allele frequency.

Overall this gene can be considered for inclusion with green rating in both ID and epilepsy panels (each in >=3 unrelated individuals).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2744 GLS Zornitza Stark edited their review of gene: GLS: Added comment: Another three individuals from two unrelated families reported with early neonatal refractory seizures, structural brain abnormalities and oedema; significantly increased glutamine levels (PMID: 30575854).; Changed rating: GREEN; Changed publications: 30970188, 30239721, 30575854; Changed phenotypes: Epileptic encephalopathy, early infantile, 71, MIM# 618328, Global developmental delay, progressive ataxia, and elevated glutamine, MIM# 618412
Intellectual disability syndromic and non-syndromic v0.2733 RAP1GDS1 Zornitza Stark gene: RAP1GDS1 was added
gene: RAP1GDS1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: RAP1GDS1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RAP1GDS1 were set to 32431071
Phenotypes for gene: RAP1GDS1 were set to Intellectual disability; dysmorphic features
Review for gene: RAP1GDS1 was set to AMBER
Added comment: Four individuals from two consanguineous families, same homozygous splice site variant detected.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2731 SETD1B Zornitza Stark changed review comment from: At least 4 unrelated individuals reported.; to: At least 7 unrelated individuals reported.
Intellectual disability syndromic and non-syndromic v0.2722 EXOC7 Chirag Patel gene: EXOC7 was added
gene: EXOC7 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: EXOC7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EXOC7 were set to PMID: 32103185
Phenotypes for gene: EXOC7 were set to brain atrophy; seizures; developmental delay; microcephaly
Review for gene: EXOC7 was set to GREEN
Added comment: 4 families with 8 affected individuals with brain atrophy, seizures, and developmental delay, and in more severe cases microcephaly and infantile death. Four novel homozygous or comp.heterozygous variants found in EXOC7, which segregated with disease in the families. They showed that EXOC7, a member of the mammalian exocyst complex, is highly expressed in developing human cortex. In addition, a zebrafish model of Exoc7 deficiency recapitulates the human disorder with increased apoptosis and decreased progenitor cells during telencephalon development, suggesting that the brain atrophy in human cases reflects neuronal degeneration.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2677 GRM7 Zornitza Stark gene: GRM7 was added
gene: GRM7 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: GRM7 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GRM7 were set to 32286009; 32248644
Phenotypes for gene: GRM7 were set to Epilepsy, microcephaly, developmental delay
Review for gene: GRM7 was set to GREEN
Added comment: Eleven individuals from six families reported, three different homozygous variants (two missense, one LoF). Developmental delay, neonatal‐ or infantile‐onset epilepsy, and microcephaly were universal. Supportive mouse model.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2665 DSCR3 Chirag Patel gene: DSCR3 was added
gene: DSCR3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: DSCR3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DSCR3 were set to PMID: 31845315
Phenotypes for gene: DSCR3 were set to Intellectual disability, no OMIM # yet
Review for gene: DSCR3 was set to RED
Added comment: 1 family/2 cousins with cognitive impairment, growth failure, skeletal abnormalities, and distinctive facial features. Both shared the homozygous nonsense variant c.178G>T (p.Glu60*) in the VPS26C gene. This gene encodes VPS26C, a member of the retriever integral membrane protein recycling pathway. The nature of the variant which is predicted to result in loss‐of‐function, expression studies revealing significant reduction in the mutant transcript, and the co‐segregation of the homozygous variant with the phenotype in two affected individuals.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2663 KMT2D Chirag Patel changed review comment from: KMT2D missense variants located in a specific region spanning exons 38 and 39 and affecting highly conserved residues cause a novel multiple malformations syndrome distinct from Kabuki syndrome, through a dominant negative mechanism.; to: KMT2D missense variants located in a specific region spanning exons 38 and 39 and affecting highly conserved residues cause a novel multiple malformations syndrome distinct from Kabuki syndrome, through a dominant negative mechanism.
- 7 unrelated families with choanal atresia, athelia or hypoplastic nipples, branchial sinus abnormalities, neck pits, lacrimal duct anomalies, hearing loss, external ear malformations, and thyroid abnormalities. None of the individuals had intellectual disability.
Intellectual disability syndromic and non-syndromic v0.2659 TTC5 Konstantinos Varvagiannis gene: TTC5 was added
gene: TTC5 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TTC5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TTC5 were set to 29302074; 32439809
Phenotypes for gene: TTC5 were set to Central hypotonia; Global developmental delay; Intellectual disability; Abnormality of nervous system morphology; Microcephaly; Abnormality of the face; Behavioral abnormality; Abnormality of the genitourinary system
Penetrance for gene: TTC5 were set to Complete
Review for gene: TTC5 was set to GREEN
Added comment: Hu et al (2019 - PMID: 29302074) reported briefly on 3 individuals from 2 consanguineous families (from Turkey and Iran) with biallelic TTC5 variants. Features included DD (3/3), ID (severe in 2/2 with relevant age), microcephaly (3/3), brain abnormalities, etc. A nonsense and a variant affecting splice site were identified by WES/WGS.

---

In a recent report, Rasheed et al (2020 - PMID: 32439809) report on the phenotype of 8 individuals - belonging to 5 consanguineous families - all 8 harboring homozygous TTC5 mutations.

Frequent features included hypotonia (6/8), motor and speech delay, moderate to severe ID (10/10 of relevant age - inclusion of less severely affected subjects was not considered by study design), brain MRI abnormalities (8/8). Other findings included microcephaly in some (6/11), behavioral abnormalities in few (autistic behavior in 2/8, aggression in 2/8), genitourinary anomalies (2/8), seizures (1/11). Facial phenotype incl. thin V-shaped upper lip, low-set ears (in most) and/or additional features.

TTC5 encodes a 440 aa protein, functioning as a scaffold to stabilise p300-JMY interactions. Apart from this role in nucleus, it has functions in the cytoplasm (inhibiting actin nucleataion, autophagosome formation, etc).

The gene has ubiquitous expression, highest in brain.

All variants were identified following WES - as the best candidates - in affected individuals with compatible Sanger studies in all affected family members and carrier parents.

2 missense and 2 nonsense variants were identified with the 2 missense SNVs localizing within TPR domains. qRT-PCR studies for a nonsense variant localizing 19 nt before the last exon, revealed fourfold decreased expression in affected individuals compared to carriers.

Families from Egypt shared a homozygous ~6.3 Mb haplotype block spanning TTC5, suggesting that p.(Arg263Ter) is likely a founder mutation.

The authors underscore some phenotypic (though not facial) similarities with Rubinstein-Taybi syndrome 2 due to EP300 mutations (in line with the role of TTC5).

Biallelic variants in genes encoding other members of the TTC family (containing a TPR motif), e.g. TTC8 or TTC15 cause disorders with neurologic manifestations (and DD/ID).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2659 SOX6 Zornitza Stark Added comment: Comment when marking as ready: Most individuals had ID, ranging from mild to severe.
Intellectual disability syndromic and non-syndromic v0.2658 SOX6 Paul De Fazio changed review comment from: 6 LoF, 4 missense, and 6 intragenic deletion variants identified in individuals with a neurodevelopmental syndrome, however the number of families is unclear to me (paper says 19 individuals from 17 families). 12 were de novo.
Sources: Literature; to: 6 LoF, 4 missense, and 6 intragenic deletion variants identified in individuals with a neurodevelopmental syndrome. Paper says 19 individuals from 17 families. 12 were de novo.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2658 SOX6 Paul De Fazio changed review comment from: 6 LoF, 4 missense, and 6 intragenic deletion variants identified in individuals with a neurodevelopmental syndrome, however the number of families is unclear to me.
Sources: Literature; to: 6 LoF, 4 missense, and 6 intragenic deletion variants identified in individuals with a neurodevelopmental syndrome, however the number of families is unclear to me (paper says 19 individuals from 17 families). 12 were de novo.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2658 SOX6 Paul De Fazio gene: SOX6 was added
gene: SOX6 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SOX6 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SOX6 were set to 32442410
Phenotypes for gene: SOX6 were set to ADHD; Craniosynostosis; Osteochondromas
Review for gene: SOX6 was set to GREEN
Added comment: 6 LoF, 4 missense, and 6 intragenic deletion variants identified in individuals with a neurodevelopmental syndrome, however the number of families is unclear to me.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2640 B9D1 Zornitza Stark changed review comment from: Two unrelated individuals with JS and bi-allelic variants in this gene, plus one individual with a more severe Meckel phenotype described. Intellectual disability is part of the phenotype.; to: Two unrelated individuals with JS and bi-allelic variants in this gene, plus one individual with a more severe Meckel phenotype described. Intellectual disability is part of the phenotype. However note that in Meckel individual one of the variants identified is a multi-gene deletion and in addition a likely path CEP290 variant also reported.
Intellectual disability syndromic and non-syndromic v0.2632 NR4A2 Zornitza Stark Added comment: Comment when marking as ready: Upgrade to Green in view of new publication reporting 9 additional individuals.
Intellectual disability syndromic and non-syndromic v0.2629 CUL3 Konstantinos Varvagiannis gene: CUL3 was added
gene: CUL3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CUL3 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: CUL3 were set to 32341456
Phenotypes for gene: CUL3 were set to Global developmental delay; Intellectual disability; Seizures; Abnormality of cardiovascular system morphology; Abnormality of the palate; Pseudohypoaldosteronism, type IIE - MIM #614496
Penetrance for gene: CUL3 were set to unknown
Review for gene: CUL3 was set to GREEN
Added comment: Please consider inclusion with amber / green rating.
--
Nakashima et al (2020 - PMID:32341456) provide clinical details on 3 unrelated individuals with de novo CUL3 variants.

Features included DD, variable degrees of ID (P1: severe, P3: mild, P2: NA although he displayed motor and severe speech and language delay and had severe learning difficulties). Two out of three had intractable seizures (onset 2 - 6 months). One presented with congenital heart defects (ASD, PV stenosis) and another submucosal palatoschisis/bifid uvula. There were no facial dysmorphisms reported.

CUL3 encodes Cullin-3, a core piece of the E3 ubiquitin ligase complex, thus playing a role in the ubiquitin-proteasome system. [ https://ghr.nlm.nih.gov/gene/CUL3 ]. Germline variants in some other Cullin family genes (eg. CUL4B, CUL7) cause disorders with ID as a feature.

The 3 individuals reported by Nakashima had variable previous investigations (karyotype, CMA, metabolic testing) which were non-diagnostic. Singleton or trio exome sequencing identified 2 frameshift and 1 missense variant (NM_003590.4:c.854T>C / p.Val285Ala), further confirmed with Sanger sequencing. De novo occurrence was confirmed by analysis of microsatellite markers in an individual with singleton ES.

While the frameshift variants were presumed to lead to NMD (not studied), studies in HEK293T cells suggested that the Val285Ala reduced binding ability with KEAP1, possibly leading to instability of the Cullin-RING ligase (CRL) complex and impairment of the ubiquitin-proteasome system.

In OMIM, the phenotype associated with heterozygous CUL3 mutations is Pseudohypoaldosteronism type IIE (PHA2E - # 614496). As OMIM and Nakashima et al comment, PHA2E-associated variants are clustered around exon 9, most lead to skipping of exon 9 and produce an in-frame deletion of 57 aa in the cullin homology domain. Few (probably 3) missense variants in exon 9 have also been reported. Individuals with PHA2E do not display DD/ID and conversely individuals with NDD did not display features of PHA2E.

Nakashima et al summarize the phenotypes associated with 12 further de novo CUL3 variants in the literature with most pLOF ones detected in individuals with autism and/or developmental disorders and in few cases with congenital heart disease. Few additional missense variants and a stoploss one have been reported in individuals with NDD and one in SCZ.

Heterozygous Cul3 (/tissue-specific) deletion in mice resulted in autism-like behavior. Cul3 deficient mice also demonstrated NMDAR hypofunction and decreased spine density. [PMIDs cited : 31455858, 31780330]

Overall haploinsufficiency is favored as the underlying mechanism of variants associated with NDD. Nakashima et al comment that the pathogenesis of missense variants remains unknown and/or that a dominant-negative effect on CRL may be possible.

Studies on larger cohorts reporting on individuals with relevant phenotypes due to de novo CUL3 variants (eg. DDD study - PMID: 28135719, Lelieveld et al - PMID: 27479843), are summarized in denovo-db (after filtering for coding variants):

http://denovo-db.gs.washington.edu/denovo-db/QueryVariantServlet?searchBy=Gene&target=cul3

Overall, this gene can be considered for inclusion in the ID (amber/green), epilepsy (amber) and/or ASD panels.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2627 UGDH Konstantinos Varvagiannis gene: UGDH was added
gene: UGDH was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: UGDH was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UGDH were set to 32001716
Phenotypes for gene: UGDH were set to Epileptic encephalopathy, early infantile, 84 - MIM #618792
Penetrance for gene: UGDH were set to Complete
Review for gene: UGDH was set to GREEN
Added comment: Hengel et al (2020 - PMID: 32001716) report on 36 individuals with biallelic UGDH pathogenic variants.

The phenotype corresponded overall to a developmental epileptic encephalopathy with hypotonia, feeding difficulties, severe global DD, moderate or commonly severe ID in all. Hypotonia and motor disorder (incl. spasticity, dystonia, ataxia, chorea, etc) often occurred prior to the onset of seizures. A single individual did not present seizures and 2 sibs had only seizures in the setting of fever.

Affected subjects were tested by exome sequencing and UGDH variants were the only/best candidates for the phenotype following also segregation studies. Many were compound heterozygous or homozygous (~6 families were consanguineous) for missense variants and few were compound heterozygous for missense and pLoF variants. There were no individuals with biallelic pLoF variants identified. Parental/sib studies were all compatible with AR inheritance mode.

UGDH encodes the enzyme UDP-glucose dehydrogenase which converts UDP-glucose to UDP-glucuronate, the latter being a critical component of the glycosaminoglycans, hyaluronan, chondroitin sulfate, and heparan sulfate [OMIM].

Patient fibroblast and biochemical assays suggested a LoF effect of variants leading to impairment of UGDH stability, oligomerization or enzymatic activity (decreased UGDH-catalyzed reduction of NAD+ to NADH / hyaluronic acid production which requires UDP-glucuronate).

Attempts to model the disorder using an already developped zebrafish model (for a hypomorphic LoF allele) were unsuccessful as fish did not exhibit seizures spontaneously or upon induction with PTZ.

Modelling of the disorder in vitro using patient-derived cerebral organoids demonstrated smaller organoids due to reduced number of proliferating neural progenitors.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2625 YIF1B Konstantinos Varvagiannis gene: YIF1B was added
gene: YIF1B was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: YIF1B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: YIF1B were set to 32006098
Phenotypes for gene: YIF1B were set to Central hypotonia; Failure to thrive; Microcephaly; Global developmental delay; Intellectual disability; Seizures; Spasticity; Abnormality of movement
Penetrance for gene: YIF1B were set to Complete
Review for gene: YIF1B was set to GREEN
Added comment: AlMuhaizea et al (2020 - PMID: 32006098) report on the phenotype of 6 individuals (from 5 families) with biallelic YIF1B truncating variants.

Affected subjects presented hypotonia, failure to thrive, microcephaly (5/6), severe global DD and ID (as evident from best motor/language milestones achieved - Table S1) as well as features suggestive of a motor disorder (dystonia/spasticity/dyskinesia). Seizures were reported in 2 unrelated individuals (2/6). MRI abnormalities were observed in some with thin CC being a feature in 3.

Variable initial investigations were performed including SNP CMA, MECP2, microcephaly / neurotransmitter disorders gene panel testing did not reveal P/LP variants.

YIF1B variants were identified in 3 families within ROH. Following exome sequencing, affected individuals were found to be homozygous for truncating variants (4/5 families being consanguineous). The following 3 variants were identified (NM_001039672.2) : c.186dupT or p.Ala64fs / c.360_361insACAT or p.Gly121fs / c.598G>T or p.Glu200*.

YIF1B encodes an intracellular transmembrane protein.

It has been previously demonstrated that - similarly to other proteins of the Yip family being implicated in intracellular traffic between the Golgi - Yif1B is involved in the anterograde traffic pathway. Yif1B KO mice demonstrate a disorganized Golgi architecture in pyramidal hippocampal neurons (Alterio et al 2015 - PMID: 26077767). The rat ortholog interacts with serotonin receptor 1 (5-HT1AR) with colocalization of Yif1BB and 5-HT1AR in intermediate compartment vesicles and involvement of the former in intracellular trafficing/modulation of 5-HT1AR transport to dendrites (PMID cited: 18685031).

Available mRNA and protein expression data (Protein Atlas) suggest that the gene is widely expressed in all tissues incl. neuronal cells. Immunochemistry data from the Human Brain Atlas also suggest that YIF1B is found in vesicles and localized to the Golgi apparatus. Immunohistochemistry in normal human brain tissue (cerebral cortex) demonstrated labeling of neuronal cells (Human Protein Atlas).

Functional/network analysis of genes co-regulated with YIF1B based on available RNAseq data, suggest enrichement in in genes important for nervous system development and function.

Please consider inclusion in other panels that may be relevant (e.g. microcephaly, etc).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2619 CDC42BPB Konstantinos Varvagiannis gene: CDC42BPB was added
gene: CDC42BPB was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CDC42BPB was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: CDC42BPB were set to 32031333
Phenotypes for gene: CDC42BPB were set to Central hypotonia; Global developmental delay; Intellectual disability; Seizures; Autistic behavior; Behavioral abnormality
Penetrance for gene: CDC42BPB were set to unknown
Review for gene: CDC42BPB was set to GREEN
Added comment: Chilton et al (2020 - PMID: 32031333) report on 14 individuals with missense and loss-of-function CDC42BPB variants.

Features included hypotonia (8/11), DD (12/13 - the 14th was a fetus), ID (7/13), ASD (8/12), clinical seizures (in 3 - a 4th had abnormal EEG without seizures), behavioral abnormalities. Variable non-specific dysmorphic features were reported in some (sparse hair being the most frequent - 4/8). Additional features were observed in few (=<4) incl. cryptorchidism, ophthalmological issues, constipation, kidney abnormalities, micropenis, etc.

All individuals had non-diagnostic prior genetic testing (incl. CMA, FMR1, MECP2, Angelman/Prader-Willi methylation studies, autism gene panel - suggesting relevance to the current panel) or metabolic testing.

Variants were identified following clinical exome sequencing with Sanger confirmation. Most occurred as de novo events (11/14) while inheritance was not available for few (3/14). Missense variants did not display (particular) clustering.

Almost all variants were absent from gnomAD and were predicted to be deleterious in silico (among others almost all had CADD scores >25).

As the authors comment, CDC42BPB encodes myotonic dystrophy-related Cdc42-binding kinase β (MRCKβ) a serine/threonine protein kinase playing a role in regulation of cytoskeletal reorganization and cell migration in nonmuscle cells (through phosporylation of MLC2).

Previous studies have demonstrated that it is ubiquitously expressed with prenatal brain expression.

The gene appears to be intolerant to pLoF (pLI of 1) as well as to missense variants (Z-score of 3.66).

CDC42BPB is a downstream effector of CDC42. Mutations of the latter cause Takenouchi-Kosaki syndrome with DD/ID and some further overlapping features (with CDC42BPB-associated phenotypes).

Homozygous Cdc42bpb KO in mouse appears to be nonviable (MGI:2136459). Loss of gek in the eyes of Drosophila results in disrupted growth cone targeting to the lamina (gek is the fly CDC42BPB ortholog).

Please consider inclusion with amber / green rating in the ID panel (>=4 relevant individuals / variants) and other panels (e.g. for epilepsy, ASD).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2597 CDK19 Zornitza Stark gene: CDK19 was added
gene: CDK19 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CDK19 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CDK19 were set to 32330417
Phenotypes for gene: CDK19 were set to Intellectual disability; epileptic encephalopathy
Review for gene: CDK19 was set to GREEN
Added comment: Three unrelated individuals with de novo missense variants reported, and intellectual disability/epileptic encephalopathy. Supportive functional data.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2589 CEP55 Zornitza Stark gene: CEP55 was added
gene: CEP55 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CEP55 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CEP55 were set to 32100459
Phenotypes for gene: CEP55 were set to Multinucleated neurons, anhydramnios, renal dysplasia, cerebellar hypoplasia, and hydranencephaly, MIM# 236500; Microcephaly; Intellectual disability
Review for gene: CEP55 was set to GREEN
Added comment: Homozygous nonsense variants in CEP55 are associated with a lethal condition characterized by multinucleated neurons, anhydramnios, renal dysplasia, cerebellar hypoplasia, and hydranencephaly (MARCH syndrome) also known as Meckel-like syndrome. New report of seven living individuals from five families with biallelic CEP55 variants. Four unrelated individuals with microcephaly, speech delays, and bilateral toe syndactyly all had a common CEP55 variant c.70G>A p.(Glu24Lys) in trans with nonsense variants. Three siblings were homozygous for a consensus splice site variant near the end of the gene. These affected girls all had severely delayed development, microcephaly, and varying degrees of lissencephaly/pachygyria. This series suggests that individuals with compound heterozygosity for nonsense and missense variants in CEP55 have a different viable phenotype.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2587 LRRC32 Zornitza Stark gene: LRRC32 was added
gene: LRRC32 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: LRRC32 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LRRC32 were set to 30976112
Phenotypes for gene: LRRC32 were set to Intellectual disability; cleft palate; proliferative retinopathy
Review for gene: LRRC32 was set to AMBER
Added comment: Three individuals from two consanguineous families segregated the same homozygous bi-allelic variant, c.1630C>T; p.(Arg544Ter), shared haplotype indicative of founder effect. Mouse model has cleft palate and neonatal death.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2578 RSRC1 Zornitza Stark edited their review of gene: RSRC1: Added comment: 2020: 17 additional individuals reported.; Changed rating: GREEN; Changed publications: 28640246, 29522154, 32227164; Changed phenotypes: Intellectual developmental disorder, autosomal recessive 70, MIM# 618402
Intellectual disability syndromic and non-syndromic v0.2575 GAD1 Zornitza Stark edited their review of gene: GAD1: Added comment: 2020: 11 individuals from 6 consanguineous families reported with bi-allelic LOF variant and a developmental/epileptic encephalopathy. Seizure onset occurred in the first 2 months of life in all. All 10 individuals, from whom early disease history was available, presented with seizure onset in the first month of life, mainly consisting of epileptic spasms or myoclonic seizures. Early EEG showed suppression-burst or pattern of burst attenuation or hypsarrhythmia if only recorded in the post-neonatal period. Eight individuals had joint contractures and/or pes equinovarus. Seven presented a cleft palate and two also had an omphalocele, reproducing the phenotype of the knockout Gad1−/− mouse model. Four individuals died before 4 years of age.; Changed publications: 15571623, 32282878; Changed phenotypes: Cerebral palsy, spastic quadriplegic, 1, MIM#603513, Developmental and epileptic encephalopathy
Intellectual disability syndromic and non-syndromic v0.2574 GALNT2 Zornitza Stark gene: GALNT2 was added
gene: GALNT2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: GALNT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GALNT2 were set to 32293671
Phenotypes for gene: GALNT2 were set to Congenital disorder of glycosylation
Review for gene: GALNT2 was set to GREEN
Added comment: Seven individuals from four families reported with bi-allelic LOF variants and global developmental delay, intellectual disability with language deficit, autistic features, behavioural abnormalities, epilepsy, chronic insomnia, white matter changes on brain MRI, dysmorphic features, decreased stature, and decreased high density lipoprotein cholesterol levels. Rodent (mouse and rat) models of GALNT2-CDG recapitulated much of the human phenotype, including poor growth and neurodevelopmental abnormalities.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2548 GNAI2 Zornitza Stark changed review comment from: Single individual with de novo variant reported.
Sources: Literature; to: Two individuals reported, some functional data.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2548 GNAI2 Zornitza Stark gene: GNAI2 was added
gene: GNAI2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: GNAI2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GNAI2 were set to 31036916
Phenotypes for gene: GNAI2 were set to Syndromic intellectual disability
Review for gene: GNAI2 was set to RED
Added comment: Single individual with de novo variant reported.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2546 FEM1B Zornitza Stark gene: FEM1B was added
gene: FEM1B was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: FEM1B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: FEM1B were set to 31036916
Phenotypes for gene: FEM1B were set to Syndromic intellectual disability
Review for gene: FEM1B was set to AMBER
Added comment: No OMIM phenotype PMID: 31036916 - a single de novo patient reported in a neurodevelopmental disorder cohort. Authors note another de novo case with the exact same variant (p.Arg126Gln) from the DDD study, and a 3rd patient from GeneMatcher with the same de novo missense again. Decipher shows this variant to be in a highly constrained region of the protein. Cannot be certain the DDD and GeneMatcher individuals are unrelated, therefore treat as two reports for now.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2545 WIPI2 Zornitza Stark gene: WIPI2 was added
gene: WIPI2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: WIPI2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: WIPI2 were set to 30968111
Phenotypes for gene: WIPI2 were set to Intellectual developmental disorder with short stature and variable skeletal anomalies 618453
Review for gene: WIPI2 was set to RED
Added comment: Four homozygous individuals from one consanguineous family with intellectual disability, short stature and variable skeletal anomalies. Functional studies in patient cells showed impaired protein function.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2539 YARS Zornitza Stark gene: YARS was added
gene: YARS was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: YARS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: YARS were set to 30304524; 29232904; 27633801
Phenotypes for gene: YARS were set to Intellectual disability; deafness; nystagmus; liver dysfunction
Review for gene: YARS was set to GREEN
Added comment: Mono-allelic variants are associated with CMT. However, 10 individuals from three unrelated families reported with bi-allelic variants and a severe phenotype, comprising ID, nystagmus, deafness, liver dysfunction and a range of other features.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2536 SLC44A1 Sebastian Lunke gene: SLC44A1 was added
gene: SLC44A1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SLC44A1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC44A1 were set to 31855247
Phenotypes for gene: SLC44A1 were set to progressive ataxia; tremor; cognitive decline; dysphagia; optic atrophy; dysarthria
Review for gene: SLC44A1 was set to GREEN
gene: SLC44A1 was marked as current diagnostic
Added comment: Four affected individuals from three families with homozygous frameshift variants. Functional evidence points to impaired choline transporter function yet unchanged membrane phosphatidylcholine content. Choline treatments may be beneficial.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2527 BAZ2B Zornitza Stark gene: BAZ2B was added
gene: BAZ2B was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: BAZ2B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: BAZ2B were set to 31999386
Phenotypes for gene: BAZ2B were set to Intellectual disability; autism
Review for gene: BAZ2B was set to GREEN
Added comment: Postulated as a candidate gene for ID/ASD by large-scale studies. Case series reports two individuals with small CNVs and and six with SNVs, mostly LoF type variants. Although the gene is generally intolerant of LoF, some LoF variants present in gnomad ?incomplete penetrance. Additional reported features were inconsistent
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2518 NUP188 Zornitza Stark changed review comment from: Additional 6 unrelated individuals reported, promoted to Green.; to: Additional 6 unrelated individuals with bi-allelic LoF variants reported, promoted to Green.
Intellectual disability syndromic and non-syndromic v0.2518 NUP188 Zornitza Stark edited their review of gene: NUP188: Added comment: Additional 6 unrelated individuals reported, promoted to Green.; Changed rating: GREEN; Changed publications: 32021605, 28726809, 32275884; Changed phenotypes: microcephaly, ID, cataract, structural brain abnormalities, hypoventilation
Intellectual disability syndromic and non-syndromic v0.2511 TFE3 Zornitza Stark gene: TFE3 was added
gene: TFE3 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: TFE3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TFE3 were set to 30595499; 31833172
Phenotypes for gene: TFE3 were set to TFE3-associated neurodevelopmental disorder; Intellectual disability; Epilepsy; Coarse facial features
Review for gene: TFE3 was set to GREEN
Added comment: Seven individuals reported; so far, all have been found to harbour de novo variants affecting exons 3 or 4.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2509 TOP2B Zornitza Stark gene: TOP2B was added
gene: TOP2B was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: TOP2B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TOP2B were set to 31953910; 28343847; 12773624
Phenotypes for gene: TOP2B were set to Intellectual disability
Review for gene: TOP2B was set to AMBER
Added comment: Two unrelated individuals reported with the same de novo variant, c.187C > T, p.(His63Tyr) and also mouse model data supports role in brain development. Gene has also been associated independently with deafness and with immunodeficiency and the variant-disease relationship remains to be fully elucidated.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2502 PIGK Zornitza Stark gene: PIGK was added
gene: PIGK was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: PIGK was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PIGK were set to 32220290
Phenotypes for gene: PIGK were set to Intellectual disability; seizures; cerebellar atrophy
Review for gene: PIGK was set to GREEN
Added comment: 12 individuals from 9 unrelated families reported.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2499 ADARB1 Zornitza Stark gene: ADARB1 was added
gene: ADARB1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: ADARB1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ADARB1 were set to 32220291
Phenotypes for gene: ADARB1 were set to Intellectual disability; microcephaly; seizures
Review for gene: ADARB1 was set to GREEN
Added comment: Four unrelated individuals with bi-allelic variants in this gene.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2491 AGTPBP1 Zornitza Stark gene: AGTPBP1 was added
gene: AGTPBP1 was added to Intellectual disability syndromic and non-syndromic. Sources: NHS GMS
Mode of inheritance for gene: AGTPBP1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: AGTPBP1 were set to 30420557
Phenotypes for gene: AGTPBP1 were set to Early onset cerebellar atrophy, developmental delay, and feeding and respiratory difficulties, severe motor neuronopathy; Neurodegeneration, childhood-onset, with cerebellar atrophy, 618276
Review for gene: AGTPBP1 was set to GREEN
Added comment: Thirteen individuals reported, clinical presentation was with developmental delay, though six went on to have a progressive neurological course. Other features include cerebellar atrophy and neuropathy.
Sources: NHS GMS
Intellectual disability syndromic and non-syndromic v0.2489 NR2F2 Sue White gene: NR2F2 was added
gene: NR2F2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: NR2F2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: NR2F2 were set to 29478779; 29663647
Phenotypes for gene: NR2F2 were set to mild intellectual disability; congenital heart disease; disorder of sexual differentiation; dysmorphic features
Penetrance for gene: NR2F2 were set to Complete
Review for gene: NR2F2 was set to AMBER
Added comment: Established gene for congenital heart disease and DSD and emerging gene for ID. 2 unrelated individuals published with mild or borderline ID, dysmorphism and de novo truncating/missense variants.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2487 EIF2AK2 Zornitza Stark gene: EIF2AK2 was added
gene: EIF2AK2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: EIF2AK2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: EIF2AK2 were set to 32197074
Phenotypes for gene: EIF2AK2 were set to Intellectual disability; white matter abnormalities; ataxia; regression with febrile illness
Review for gene: EIF2AK2 was set to GREEN
Added comment: Eight individuals with de novo variants and complex neurodevelopmental phenotype.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2486 EIF2AK1 Zornitza Stark gene: EIF2AK1 was added
gene: EIF2AK1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: EIF2AK1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: EIF2AK1 were set to 32197074
Phenotypes for gene: EIF2AK1 were set to Intellectual disability; white matter abnormalities
Review for gene: EIF2AK1 was set to RED
Added comment: Single individual reported with de novo variant in this gene.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2484 NOVA2 Zornitza Stark gene: NOVA2 was added
gene: NOVA2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: NOVA2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: NOVA2 were set to 32197073
Phenotypes for gene: NOVA2 were set to Intellectual disability; autism; hypotonia; spasticity; ataxia
Mode of pathogenicity for gene: NOVA2 was set to Other
Review for gene: NOVA2 was set to GREEN
Added comment: Six individuals with de novo frameshift variants resulting in C-terminal extension suggesting partial LoF as mechanism.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2479 CNOT3 Zornitza Stark Added comment: Comment when marking as ready: 16 unrelated individuals reported.
Intellectual disability syndromic and non-syndromic v0.2469 ISCA1 Zornitza Stark gene: ISCA1 was added
gene: ISCA1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: ISCA1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ISCA1 were set to 28356563; 32092383; 31016283; 30113620; 30105122
Phenotypes for gene: ISCA1 were set to Multiple mitochondrial dysfunctions syndrome 5, MIM# 617613
Review for gene: ISCA1 was set to GREEN
gene: ISCA1 was marked as current diagnostic
Added comment: Multiple unrelated families reported. Severe disorder characterised by progressive neurologic deterioration beginning in early infancy. Affected individuals have essentially no psychomotor development and have early-onset seizures with neurologic decline and spasticity. Brain imaging shows severe leukodystrophy with evidence of dys- or delayed myelination. Rat model results in early lethality. Founder variant c.259G > A, p.(Glu87Lys) reported in Indian families.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2462 SUPT16H Zornitza Stark gene: SUPT16H was added
gene: SUPT16H was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SUPT16H was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SUPT16H were set to 31924697
Phenotypes for gene: SUPT16H were set to Intellectual disability; Abnormality of the corpus callosum
Review for gene: SUPT16H was set to GREEN
Added comment: Four unrelated individuals with de novo missense variants in this gene. Publication also reports on a deletion, but note this includes other genes and the individual also had another CNV.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2456 TNR Zornitza Stark gene: TNR was added
gene: TNR was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: TNR was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TNR were set to 32099069
Phenotypes for gene: TNR were set to Spastic para- or tetraparesis; Axial muscular hypotonia; Intellectual disability; Transient opisthotonus
Review for gene: TNR was set to GREEN
Added comment: 13 individuals from 8 unrelated families reported.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2455 RSPRY1 Zornitza Stark changed review comment from: Two unrelated individuals reported, some functional evidence.
Sources: Expert list; to: Two unrelated individuals reported, some functional evidence. Dev delay/autism part of the phenotype.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2454 RSPRY1 Zornitza Stark gene: RSPRY1 was added
gene: RSPRY1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: RSPRY1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RSPRY1 were set to 26365341
Phenotypes for gene: RSPRY1 were set to Spondyloepimetaphyseal dysplasia, Faden-Alkuraya type, 616585
Review for gene: RSPRY1 was set to AMBER
Added comment: Two unrelated individuals reported, some functional evidence.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2448 RNF13 Zornitza Stark gene: RNF13 was added
gene: RNF13 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: RNF13 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RNF13 were set to 30595371
Phenotypes for gene: RNF13 were set to Epileptic encephalopathy, early infantile, 73 618379
Mode of pathogenicity for gene: RNF13 was set to Other
Review for gene: RNF13 was set to GREEN
Added comment: Three unrelated individuals with de novo variants in this gene and severe neurological phenotype, including microcephaly, seizures, visual impairment, profound developmental delay.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2439 MRPS34 Zornitza Stark gene: MRPS34 was added
gene: MRPS34 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: MRPS34 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MRPS34 were set to 28777931
Phenotypes for gene: MRPS34 were set to Combined oxidative phosphorylation deficiency 32, MIM# 617664
Review for gene: MRPS34 was set to GREEN
gene: MRPS34 was marked as current diagnostic
Added comment: Six individuals from 4 unrelated families; clinical presentation is with developmental delay/regression. More variable features include movement disorders, microcephaly, strabismus, nystagmus, optic atrophy.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2432 MED12L Zornitza Stark gene: MED12L was added
gene: MED12L was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: MED12L was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MED12L were set to 31155615
Phenotypes for gene: MED12L were set to Intellectual disability; Seizures; Autism
Review for gene: MED12L was set to GREEN
Added comment: 7 individuals reported, 3 with CNVs (encompassing other genes) and 4 with SNVs (frameshift, nonsense and splice site).
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2430 MCM3AP Zornitza Stark gene: MCM3AP was added
gene: MCM3AP was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: MCM3AP was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MCM3AP were set to 24123876; 28633435; 28969388; 29982295
Phenotypes for gene: MCM3AP were set to Peripheral neuropathy, autosomal recessive, with or without impaired intellectual development, MIM#618124
Review for gene: MCM3AP was set to GREEN
gene: MCM3AP was marked as current diagnostic
Added comment: ID is a feature in many of the reported individuals.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2420 TRIO Zornitza Stark changed review comment from: The nonsense mutations are spread along the TRIO sequence, and affected individuals show variable neurodevelopmental phenotypes. In contrast, missense variants cluster into two mutational hotspots in the TRIO sequence, one in the seventh spectrin repeat and one in the RAC1-activating GEFD1.; to: The nonsense mutations are spread along the TRIO sequence, and affected individuals show variable neurodevelopmental phenotypes. In contrast, missense variants cluster into two mutational hotspots in the TRIO sequence, one in the seventh spectrin repeat and one in the RAC1-activating GEFD1. Individuals with a pathogenic variant in the seventh spectrin repeat have a more severe ID associated with macrocephaly than do most individuals with GEFD1 variants, who display milder ID and microcephaly.
Intellectual disability syndromic and non-syndromic v0.2413 NUP188 Zornitza Stark changed review comment from: Two unrelated individuals with homozygous truncating variants in this gene reported, Sandestin et al 2019, plus another by Strauss et al 2018. Also note two papers reporting mono allelic variants and disparate phenotypes (CDH and mitral valve prolapse, respectively), Yates et al, Haskell et al.; to: Two unrelated individuals with homozygous truncating variants in this gene reported, Sandestig et al 2019 (died in early infancy), plus another by Strauss et al 2018. Also note two papers reporting mono allelic variants and disparate phenotypes (CDH and mitral valve prolapse, respectively), Yates et al, Haskell et al.
Intellectual disability syndromic and non-syndromic v0.2412 NUDT2 Zornitza Stark gene: NUDT2 was added
gene: NUDT2 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: NUDT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NUDT2 were set to 27431290; 30059600
Phenotypes for gene: NUDT2 were set to Muscular hypotonia; Global developmental delay; Intellectual disability
Review for gene: NUDT2 was set to AMBER
Added comment: 7 affected individuals from 4 Saudi families, with same homozygous truncating variant.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2395 NDUFS3 Zornitza Stark changed review comment from: At least three families reported.; to: At least three families reported. In the original report, the affected individual was phenotypically normal until 9 years of age but had rapidly progressive multi-system disease.
Intellectual disability syndromic and non-syndromic v0.2387 NDUFB3 Zornitza Stark changed review comment from: Ten families and functional data.; to: Ten families and functional data. In particular, the 8 families of shared Irish ancestry only had short stature and dysmorphic features, without marked metabolic disturbance. One of the other reported individuals died in infancy, again making it difficult to know whether ID would have been part of the phenotype.
Intellectual disability syndromic and non-syndromic v0.2386 NDUFAF6 Zornitza Stark changed review comment from: Multiple unrelated families reported.; to: Multiple unrelated families reported. Presentation in one family was with lactic acidosis in newborn period, and in another with regression in childhood. Limited phenotypic information for others. Unclear if and in what proportion of affected individuals ID is likely to be the main or presenting feature.
Intellectual disability syndromic and non-syndromic v0.2381 NDUFAF4 Zornitza Stark changed review comment from: Two unrelated families and functional data.; to: Two unrelated families and functional data. Multiple affected individuals in one family (18179882) presented in newborn period with marked lactic acidosis, one long-term survivor (7yo at assessment) had profound ID. Individual from second family (28853723) presented in infancy with dev delay. Borderline gene-disease association for mitochondrial disease, and unclear what proportion of individuals are likely to present/manifest as ID.
Intellectual disability syndromic and non-syndromic v0.2334 TRIM8 Zornitza Stark changed review comment from: Six unrelated individuals reported.
Sources: Expert list; to: Six unrelated individuals reported. All variants reported to date are truncating, affecting the last (sixth exon) and as a result may escape nonsense-mediated decay. Since TRIM8 homodimerizes via its (upstream) coiled-coil domain and its C-terminal domain is required for nuclear localization, a dominant-negative effect is postulated by the authors. Haploinsufficiency appears less likely.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2333 TRIM8 Zornitza Stark gene: TRIM8 was added
gene: TRIM8 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: TRIM8 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TRIM8 were set to 30244534; 27346735; 23934111
Phenotypes for gene: TRIM8 were set to Intellectual disability; Seizures
Review for gene: TRIM8 was set to GREEN
gene: TRIM8 was marked as current diagnostic
Added comment: Six unrelated individuals reported.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2319 SPOP Zornitza Stark gene: SPOP was added
gene: SPOP was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: SPOP was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SPOP were set to 32109420
Phenotypes for gene: SPOP were set to Intellectual disability; dysmorphism; microcephaly; macrocephaly
Mode of pathogenicity for gene: SPOP was set to Other
Review for gene: SPOP was set to GREEN
Added comment: Seven individuals reported with de novo missense variants in this gene. Gain-of-function variants associated with microcephaly whereas dominant-negative variants associated with macrocephaly.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.2309 TMEM94 Zornitza Stark gene: TMEM94 was added
gene: TMEM94 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: TMEM94 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMEM94 were set to 30526868
Phenotypes for gene: TMEM94 were set to Intellectual developmental disorder with cardiac defects and dysmorphic facies, MIM#618316
Review for gene: TMEM94 was set to GREEN
Added comment: 10 individuals from 6 unrelated families.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2292 TGFB1 Zornitza Stark gene: TGFB1 was added
gene: TGFB1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: TGFB1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TGFB1 were set to 29483653
Phenotypes for gene: TGFB1 were set to Inflammatory bowel disease, immunodeficiency, and encephalopathy, MIM# 618213
Review for gene: TGFB1 was set to AMBER
Added comment: Three individuals from two unrelated families reported. DD/ID and seizures in addition to IBD/immunodeficiency.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2209 PNKP Zornitza Stark Added comment: Comment when marking as ready: Note 17-bp duplication (1250_1266dup) in exon 14 identified in multiple individuals.
Intellectual disability syndromic and non-syndromic v0.2201 SLC1A2 Zornitza Stark gene: SLC1A2 was added
gene: SLC1A2 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: SLC1A2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SLC1A2 were set to 27476654; 28777935
Phenotypes for gene: SLC1A2 were set to Epileptic encephalopathy, early infantile, 41, MIM#617105; Intellectual disability
Review for gene: SLC1A2 was set to GREEN
gene: SLC1A2 was marked as current diagnostic
Added comment: Four unrelated individuals reported.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2177 PTRHD1 Zornitza Stark gene: PTRHD1 was added
gene: PTRHD1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: PTRHD1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PTRHD1 were set to 30398675; 27134041; 27753167; 29143421
Phenotypes for gene: PTRHD1 were set to Parkinsonism; Intellectual disability
Review for gene: PTRHD1 was set to GREEN
Added comment: Three unrelated families reported: two with homozygous missense variants; and one with truncating variant. Affected individuals have juvenile-onset parkinsonism and ID.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2159 POLR1C Zornitza Stark gene: POLR1C was added
gene: POLR1C was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: POLR1C was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: POLR1C were set to 26151409
Phenotypes for gene: POLR1C were set to Leukodystrophy, hypomyelinating, 11, MIM# 616494
Review for gene: POLR1C was set to GREEN
Added comment: 8 unrelated individuals reported, ID is part of the phenotype.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2139 VARS Chirag Patel gene: VARS was added
gene: VARS was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: VARS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: VARS were set to PubMed: 30755616, 30755602, 26539891, 29691655, 30275004
Phenotypes for gene: VARS were set to Neurodevelopmental disorder with microcephaly, seizures, and cortical atrophy; OMIM #617802
Review for gene: VARS was set to GREEN
Added comment: 14 families with 20 affected individuals
- homozygous missense or compound heterozygous mutations in VARS
- mutations segregated with the disorder in the families
- functional studies in some cases
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2117 ZIC1 Chirag Patel gene: ZIC1 was added
gene: ZIC1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: ZIC1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ZIC1 were set to PMID: 26340333, 30391508
Phenotypes for gene: ZIC1 were set to Structural brain anomalies with impaired intellectual development and craniosynostosis; OMIM #618736 
Review for gene: ZIC1 was set to GREEN
Added comment: 5 families with heterozygous mutations located in the final (third) exon of ZIC1 who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5-12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture.

2 sibs with BAIDCS, Vandervore et al. (2018) identified heterozygosity for a frameshift mutation in the ZIC1 gene. Neither parent had evidence of the mutation by whole-exome sequencing, suggesting that gonadal mosaicism for the mutation was present in one of the parents. Expression of the mutated allele was detected in patient fibroblasts by RT-PCR, evidence that the mutant mRNA did not undergo nonsense-mediated decay and probably generates an abnormal protein.


Also heterozygous deletions of ZIC1 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum. Loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2108 GLS Zornitza Stark edited their review of gene: GLS: Added comment: In addition, single individual also reported with de novo, GoF variant with profound ID, cataract.; Changed mode of pathogenicity: Other; Changed publications: 30970188, 30239721; Changed phenotypes: Global developmental delay, progressive ataxia, and elevated glutamine, MIM# 618412; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Intellectual disability syndromic and non-syndromic v0.2099 PHACTR1 Zornitza Stark gene: PHACTR1 was added
gene: PHACTR1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: PHACTR1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PHACTR1 were set to 30256902; 28135719; 23033978; 27457812
Phenotypes for gene: PHACTR1 were set to Seizures:Epileptic encephalopathy, early infantile, 70, MIM# 618298; PHACTR1-associated neurodevelopment disorder
Penetrance for gene: PHACTR1 were set to Incomplete
Mode of pathogenicity for gene: PHACTR1 was set to Other
Review for gene: PHACTR1 was set to GREEN
gene: PHACTR1 was marked as current diagnostic
Added comment: 6 unrelated individuals reported altogether with variants in this gene. Several as part of large cohorts, so limited variant and patient characterisation. One variant reported by de Ligt et al is present in the population (4 individuals) suggesting reduced penetrance. However, functional data (including mouse model) for this and other variants exerting a dominant negative effect.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2070 LIPT2 Zornitza Stark gene: LIPT2 was added
gene: LIPT2 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: LIPT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LIPT2 were set to 28757203
Phenotypes for gene: LIPT2 were set to Encephalopathy, neonatal severe, with lactic acidosis and brain abnormalities, MIM#617668
Review for gene: LIPT2 was set to AMBER
Added comment: Three individuals from two unrelated families; profound ID.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2063 KIF2A Zornitza Stark gene: KIF2A was added
gene: KIF2A was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: KIF2A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KIF2A were set to 23603762; 21594994; 27747449; 27896282
Phenotypes for gene: KIF2A were set to Cortical dysplasia, complex, with other brain malformations 3, 615411
Review for gene: KIF2A was set to GREEN
gene: KIF2A was marked as current diagnostic
Added comment: Five unrelated individuals reported.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2061 KCNT2 Zornitza Stark gene: KCNT2 was added
gene: KCNT2 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: KCNT2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KCNT2 were set to 29069600; 29740868
Phenotypes for gene: KCNT2 were set to Epileptic encephalopathy, early infantile 57, 617771
Mode of pathogenicity for gene: KCNT2 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: KCNT2 was set to GREEN
gene: KCNT2 was marked as current diagnostic
Added comment: Three unrelated individuals reported.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2059 KCNK4 Zornitza Stark gene: KCNK4 was added
gene: KCNK4 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: KCNK4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KCNK4 were set to 30290154
Phenotypes for gene: KCNK4 were set to Facial dysmorphism, hypertrichosis, epilepsy, intellectual/developmental delay, and gingival overgrowth syndrome 618381
Mode of pathogenicity for gene: KCNK4 was set to Other
Review for gene: KCNK4 was set to GREEN
Added comment: Three unrelated individuals reported with a distinctive syndromic ID condition and de novo variants (two of the individuals had the same variant). Likely GoF as KO mice do not share the phenotype.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2007 GRIN2D Zornitza Stark gene: GRIN2D was added
gene: GRIN2D was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: GRIN2D was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GRIN2D were set to 27616483; 30280376
Phenotypes for gene: GRIN2D were set to Epileptic encephalopathy, early infantile, 46, MIM# 617162; intellectual disability
Mode of pathogenicity for gene: GRIN2D was set to Other
Review for gene: GRIN2D was set to GREEN
gene: GRIN2D was marked as current diagnostic
Added comment: Five unrelated individuals reported, two with recurrent variant (NM_000836.2:c.1999G>A or p.Val667Ile). GoF postulated as mechanism.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.2005 GRIA1 Zornitza Stark gene: GRIA1 was added
gene: GRIA1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: GRIA1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GRIA1 were set to 28628100; 23033978; 26350204; 24896178
Phenotypes for gene: GRIA1 were set to Intellectual disability; autism
Review for gene: GRIA1 was set to GREEN
Added comment: Multiple affected individuals reported but in large ID cohorts reporting multiple candidate genes. Recurrent (p.A636T) variant.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1991 GMNN Zornitza Stark gene: GMNN was added
gene: GMNN was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: GMNN was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GMNN were set to 26637980
Phenotypes for gene: GMNN were set to Meier-Gorlin syndrome 6, MIM# 616835
Review for gene: GMNN was set to AMBER
Added comment: Two of the three reported individuals had ID.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1989 TRAPPC4 Zornitza Stark gene: TRAPPC4 was added
gene: TRAPPC4 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert Review
Mode of inheritance for gene: TRAPPC4 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TRAPPC4 were set to 31794024
Phenotypes for gene: TRAPPC4 were set to intellectual disability; epilepsy; spasticity; microcephaly
Review for gene: TRAPPC4 was set to GREEN
Added comment: Seven individuals from three unrelated families reported; recurrent splice site variant (hg19:chr11:g.118890966A>G; TRAPPC4: NM_016146.5; c.454+3A>G), not a founder variant.
Sources: Expert Review
Intellectual disability syndromic and non-syndromic v0.1985 PMPCB Zornitza Stark gene: PMPCB was added
gene: PMPCB was added to Intellectual disability syndromic and non-syndromic. Sources: Expert Review
Mode of inheritance for gene: PMPCB was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PMPCB were set to 29576218
Phenotypes for gene: PMPCB were set to Multiple mitochondrial dysfunctions syndrome 6, MIM# 617954
Review for gene: PMPCB was set to GREEN
Added comment: Five individuals from four families; seizures in 4/5 individuals reported, onset in infancy.
Sources: Expert Review
Intellectual disability syndromic and non-syndromic v0.1983 NSF Zornitza Stark gene: NSF was added
gene: NSF was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: NSF was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: NSF were set to 31675180
Phenotypes for gene: NSF were set to Seizures; EEG with burst suppression; Global developmental delay; Intellectual disability
Review for gene: NSF was set to AMBER
Added comment: Two individuals reported with de novo missense variants in this gene.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1981 KAT8 Zornitza Stark gene: KAT8 was added
gene: KAT8 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: KAT8 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KAT8 were set to 31794431
Phenotypes for gene: KAT8 were set to Intellectual disability; seizures; autism; dysmorphic features
Review for gene: KAT8 was set to GREEN
Added comment: Eight unrelated individuals reported with de novo variants in this gene and a mouse model. All variants missense, in the chromobarrel domain or the acetyltransferase domain; three individuals had the same variant p.Tyr90Cys . One more individual reported with bi-allelic variants: one missense and one frameshift; carrier parents were normal suggesting that may be haploinsuffiency is not the mechanism.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1966 GABBR2 Zornitza Stark gene: GABBR2 was added
gene: GABBR2 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: GABBR2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GABBR2 were set to 29100083; 28061363; 28135719; 28856709; 29369404; 29377213
Phenotypes for gene: GABBR2 were set to Neurodevelopmental disorder with poor language and loss of hand skills, 617903
Review for gene: GABBR2 was set to GREEN
gene: GABBR2 was marked as current diagnostic
Added comment: At least 7 unrelated individuals reported, missense variants only, A707T and A567T (recurrent).
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1949 FRRS1L Zornitza Stark gene: FRRS1L was added
gene: FRRS1L was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: FRRS1L was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FRRS1L were set to 27236917; 27239025
Phenotypes for gene: FRRS1L were set to Epileptic encephalopathy, early infantile, 37, MIM#616981
Review for gene: FRRS1L was set to GREEN
Added comment: Five unrelated individuals reported.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1939 TKFC Zornitza Stark gene: TKFC was added
gene: TKFC was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TKFC was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TKFC were set to 32004446
Phenotypes for gene: TKFC were set to Developmental delay; cataracts; liver dysfunction
Review for gene: TKFC was set to AMBER
Added comment: Two unrelated individuals reported.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1937 RALGAPA1 Zornitza Stark gene: RALGAPA1 was added
gene: RALGAPA1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: RALGAPA1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RALGAPA1 were set to 32004447
Phenotypes for gene: RALGAPA1 were set to Intellectual disability; hypotonia; infantile spasms.
Review for gene: RALGAPA1 was set to GREEN
Added comment: Four unrelated individuals reported.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1920 EMC1 Zornitza Stark gene: EMC1 was added
gene: EMC1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: EMC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EMC1 were set to 26942288; 29271071
Phenotypes for gene: EMC1 were set to Cerebellar atrophy, visual impairment, and psychomotor retardation, MIM# 616875
Review for gene: EMC1 was set to GREEN
gene: EMC1 was marked as current diagnostic
Added comment: Four unrelated families with bi-allelic variants in this gene reported. Single individual with heterozygous variant: insufficient evidence at present for mono allelic variants causing disease.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1896 DLG4 Zornitza Stark edited their review of gene: DLG4: Added comment: Four unrelated individuals reported.; Changed rating: GREEN; Changed publications: 27479843, 25123844, 19617690, 29460436, 23020937, 28135719; Changed phenotypes: Intellectual disability, Marfanoid habitus; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted; Set current diagnostic: yes
Intellectual disability syndromic and non-syndromic v0.1895 DLAT Zornitza Stark edited their review of gene: DLAT: Added comment: Only two families with ID reported; third individual had paroxysmal dyskinesia.; Changed rating: AMBER; Changed publications: 16049940, 29093066
Intellectual disability syndromic and non-syndromic v0.1886 DCPS Zornitza Stark gene: DCPS was added
gene: DCPS was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: DCPS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DCPS were set to 25701870; 30289615; 25712129
Phenotypes for gene: DCPS were set to Al-Raqad syndrome, MIM#616459
Review for gene: DCPS was set to GREEN
gene: DCPS was marked as current diagnostic
Added comment: 7 individuals from 3 families reported.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1882 CUX1 Zornitza Stark gene: CUX1 was added
gene: CUX1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: CUX1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CUX1 were set to 25059644; 20510857; 30014507
Phenotypes for gene: CUX1 were set to Global developmental delay with or without impaired intellectual development, MIM#618330
Review for gene: CUX1 was set to GREEN
gene: CUX1 was marked as current diagnostic
Added comment: Nine individuals from 7 families reported. Three individuals had normal intelligence at school age despite significant early developmental delay.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1856 CHD1 Zornitza Stark edited their review of gene: CHD1: Added comment: Possible dominant negative mechanism: reported variants are missense, an individual with a deletion did not have a neurological phenotype.; Changed mode of pathogenicity: Other
Intellectual disability syndromic and non-syndromic v0.1855 CEP104 Zornitza Stark gene: CEP104 was added
gene: CEP104 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: CEP104 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CEP104 were set to 26477546
Phenotypes for gene: CEP104 were set to Joubert syndrome 25, MIM# 616781
Review for gene: CEP104 was set to GREEN
Added comment: Three unrelated individuals reported, ID is part of the phenotype.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1843 CARS2 Zornitza Stark gene: CARS2 was added
gene: CARS2 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: CARS2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CARS2 were set to 30139652; 25787132
Phenotypes for gene: CARS2 were set to Combined oxidative phosphorylation deficiency 27, MIM#616672
Review for gene: CARS2 was set to GREEN
Added comment: Three unrelated individuals described with this mitochondrial disorder, ID is part of the phenotype.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1833 ACSL4 Zornitza Stark Added comment: Comment when marking as ready: At least three unrelated individuals reported.
Intellectual disability syndromic and non-syndromic v0.1779 CACNA2D2 Zornitza Stark gene: CACNA2D2 was added
gene: CACNA2D2 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: CACNA2D2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CACNA2D2 were set to 23339110; 24358150; 30410802; 29997391; 31402629; 11487633; 11756448; 4177347; 14660671; 15331424
Phenotypes for gene: CACNA2D2 were set to Cerebellar atrophy with seizures and variable developmental delay, MIM#618501
Review for gene: CACNA2D2 was set to GREEN
Added comment: Multiple affected individuals reported; DD/ID is variable but present in most.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1775 C8orf37 Zornitza Stark gene: C8orf37 was added
gene: C8orf37 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: C8orf37 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: C8orf37 were set to 26854863; 27008867
Phenotypes for gene: C8orf37 were set to Bardet-Biedl syndrome 21, MIM#617406
Review for gene: C8orf37 was set to AMBER
Added comment: Two unrelated individuals reported with BBS; note gene has an association with retinal ciliopathies.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1759 FBXW11 Alison Yeung gene: FBXW11 was added
gene: FBXW11 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: FBXW11 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: FBXW11 were set to PMID: 31402090
Phenotypes for gene: FBXW11 were set to Intellectual disability; developmental eye anomalies; digital anomalies
Review for gene: FBXW11 was set to GREEN
gene: FBXW11 was marked as current diagnostic
Added comment: Reported in >3 unrelated individuals
Functional studies in Zebrafish
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1728 ALDOB Zornitza Stark edited their review of gene: ALDOB: Added comment: ID is not an intrinsic feature of this condition; most reported individuals have had normal cognition; Changed rating: RED
Intellectual disability syndromic and non-syndromic v0.1727 CTBP1 Sebastian Lunke gene: CTBP1 was added
gene: CTBP1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: CTBP1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CTBP1 were set to 27094857; 28955726; 31041561
Phenotypes for gene: CTBP1 were set to Hypotonia, ataxia, developmental delay, and tooth enamel defect syndrome, 617915
gene: CTBP1 was marked as current diagnostic
Added comment: From GEL: There are 12 individuals reported from 3 papers (2 papers from the same group). All 12 individuals have the same heterozygous missense variant (R331W in NM_001012614.1; R342W in NM_001328.2). It is a de novo variant in all cases except one where it's inherited from a somatic parent. The phenotype of all 12 is summarised in Table 1 of PMID:31041561. Global DD is a consistent feature (varying severity). ID is recorded in several patients. Developmental motor regression recorded in 4 patients (2 of which also had cognitive regression). Authors note that healthy individuals with heterozygous LOF alleles have been reported.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1727 CTBP1 Sebastian Lunke gene: CTBP1 was added
gene: CTBP1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: CTBP1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CTBP1 were set to 27094857; 28955726; 31041561
Phenotypes for gene: CTBP1 were set to Hypotonia, ataxia, developmental delay, and tooth enamel defect syndrome, 617915
gene: CTBP1 was marked as current diagnostic
Added comment: From GEL: There are 12 individuals reported from 3 papers (2 papers from the same group). All 12 individuals have the same heterozygous missense variant (R331W in NM_001012614.1; R342W in NM_001328.2). It is a de novo variant in all cases except one where it's inherited from a somatic parent. The phenotype of all 12 is summarised in Table 1 of PMID:31041561. Global DD is a consistent feature (varying severity). ID is recorded in several patients. Developmental motor regression recorded in 4 patients (2 of which also had cognitive regression). Authors note that healthy individuals with heterozygous LOF alleles have been reported.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1724 AGO1 Zornitza Stark gene: AGO1 was added
gene: AGO1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: AGO1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: AGO1 were set to 30213762; 22495306; 23020937; 25363768; 25356899; 27620904; 29346770; 28135719
Phenotypes for gene: AGO1 were set to Intellectual disability; autism
Review for gene: AGO1 was set to GREEN
Added comment: Multiple individuals reported with de novo variants in this gene, most as part of large ID cohorts so phenotypic information is scarce; however, given large number I have rated as Green.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1712 CCDC47 Sebastian Lunke gene: CCDC47 was added
gene: CCDC47 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: CCDC47 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: CCDC47 were set to 30401460
Phenotypes for gene: CCDC47 were set to Trichohepatoneurodevelopmental syndrome, 618268
Review for gene: CCDC47 was set to GREEN
gene: CCDC47 was marked as current diagnostic
Added comment: From GEL: Morimoto el al. (PMID: 30401460) report on 4 individuals from 4 unrelated families with biallelic LoF variants in CCDC47. The phenotype consisted of abnormal (woolly) hair, liver dysfunction, common facial features as well as DD/ID.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1708 ACAT1 Zornitza Stark commented on gene: ACAT1: Primarily manifests as metabolic decompensation, DD/ID reported in a few individuals, mostly normal cognition.
Intellectual disability syndromic and non-syndromic v0.1690 FUK Zornitza Stark gene: FUK was added
gene: FUK was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: FUK was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FUK were set to 30503518
Phenotypes for gene: FUK were set to Congenital disorder of glycosylation with defective fucosylation 2, MIM# 618324
Review for gene: FUK was set to AMBER
Added comment: Two unrelated individuals reported.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1688 ZNF142 Zornitza Stark gene: ZNF142 was added
gene: ZNF142 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: ZNF142 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ZNF142 were set to 31036918
Phenotypes for gene: ZNF142 were set to Neurodevelopmental disorder with impaired speech and hyperkinetic movements, MIM#618425
Review for gene: ZNF142 was set to GREEN
gene: ZNF142 was marked as current diagnostic
Added comment: 7 individuals from 4 unrelated families reported.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1684 VPS11 Zornitza Stark gene: VPS11 was added
gene: VPS11 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: VPS11 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: VPS11 were set to 27120463; 26307567; 27473128
Phenotypes for gene: VPS11 were set to Leukodystrophy, hypomyelinating, 12, MIM#616683
Review for gene: VPS11 was set to GREEN
Added comment: ID, (variable) acquired microcephaly with hypomyelination; seizures in several reported individuals. 13 individuals from 7 Ashkenazi Jewish families, homozygous for a founder mutation (NM_021729.5:c.2536T>G or p.Cys846Gly); a different variant (p.Leu387_Gly395del) reported in a consanguineous family.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1677 SLC1A4 Zornitza Stark gene: SLC1A4 was added
gene: SLC1A4 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: SLC1A4 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC1A4 were set to 29989513; 27193218; 26138499; 26041762; 25930971
Phenotypes for gene: SLC1A4 were set to Spastic tetraplegia, thin corpus callosum, and progressive microcephaly, MIM# 616657
Review for gene: SLC1A4 was set to GREEN
gene: SLC1A4 was marked as current diagnostic
Added comment: Multiple affected individuals reported in the literature, seizures/EE are part of the phenotype. While initial reports identified a recurrent missense variant in individuals of Ashkenazi Jewish ancestry, there have been more recent reports of individuals from other ethnic backgrounds with different variants
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1675 NBEA Zornitza Stark gene: NBEA was added
gene: NBEA was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: NBEA was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: NBEA were set to 30269351; 28554332; 12746398; 12826745; 11450821; 3377648; 23277425; 22109531; 23153818
Phenotypes for gene: NBEA were set to Intellectual disability; Seizures
Review for gene: NBEA was set to GREEN
gene: NBEA was marked as current diagnostic
Added comment: 24 de novo variants reported in individuals with a neurodevelopmental disorder.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1673 MACF1 Zornitza Stark gene: MACF1 was added
gene: MACF1 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: MACF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MACF1 were set to 30471716
Phenotypes for gene: MACF1 were set to Lissencephaly 9 with complex brainstem malformation, MIM# 618325
Mode of pathogenicity for gene: MACF1 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments
Review for gene: MACF1 was set to GREEN
Added comment: Nine individuals (including a pair of twins) reported with de novo, likely GoF variants in this gene.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1664 GNB5 Zornitza Stark gene: GNB5 was added
gene: GNB5 was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: GNB5 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GNB5 were set to 27523599; 27677260; 28697420; 29368331
Phenotypes for gene: GNB5 were set to Intellectual developmental disorder with cardiac arrhythmia, 617173; Language delay and ADHD/cognitive impairment with or without cardiac arrhythmia, 617182; Early infantile epileptic encephalopathy (EIEE)
Review for gene: GNB5 was set to GREEN
gene: GNB5 was marked as current diagnostic
Added comment: Multiple affected individuals reported.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1658 GOT2 Zornitza Stark gene: GOT2 was added
gene: GOT2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: GOT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GOT2 were set to 31422819
Phenotypes for gene: GOT2 were set to Epileptic encephalopathy, early infantile, 82, MIM# 618721
Review for gene: GOT2 was set to GREEN
Added comment: Four individuals from three unrelated families reported, EE/DD. Treatment with pyridoxine and serine ameliorated the phenotype.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1656 RAB11A Zornitza Stark gene: RAB11A was added
gene: RAB11A was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: RAB11A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RAB11A were set to 29100083
Phenotypes for gene: RAB11A were set to Intellectual disability; seizures
Review for gene: RAB11A was set to AMBER
Added comment: Five individuals reported with DNMs and neurodevelopmental phenotypes as part of this paper; however, clinical details are sparse. Emerging gene, phenotype not yet clearly delineated.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1654 DHPS Zornitza Stark gene: DHPS was added
gene: DHPS was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: DHPS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DHPS were set to 30661771
Phenotypes for gene: DHPS were set to Neurodevelopmental disorder with seizures and speech and walking impairment, MIM#618480
Review for gene: DHPS was set to GREEN
gene: DHPS was marked as current diagnostic
Added comment: 5 individuals from 4 unrelated families with biallelic pathogenic variants in DHPS, note one variant is recurrent (c.518A>G or p.Asn173Ser). The phenotype consisted of DD/ID (5/5), tone abnormalities (hypotonia/hypertonia/spasticity - 5/5), seizures (5/5 - in one case though unclear staring spells) with EEG abnormalities (5/5). Additionally most individuals displayed behavioral issues, or some common facial features
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1652 DHDDS Zornitza Stark gene: DHDDS was added
gene: DHDDS was added to Intellectual disability syndromic and non-syndromic. Sources: Expert list
Mode of inheritance for gene: DHDDS was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DHDDS were set to 29100083
Phenotypes for gene: DHDDS were set to Developmental delay and seizures with or without movement abnormalities, MIM#617836
Review for gene: DHDDS was set to GREEN
gene: DHDDS was marked as current diagnostic
Added comment: Five unrelated individuals reported with mono-allelic variants and a neurodevelopmental phenotype.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1641 MTHFS Zornitza Stark gene: MTHFS was added
gene: MTHFS was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: MTHFS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MTHFS were set to 30031689; 31844630; 22303332
Phenotypes for gene: MTHFS were set to Neurodevelopmental disorder with microcephaly, epilepsy, and hypomyelination, 618367
Review for gene: MTHFS was set to GREEN
Added comment: Three unrelated individuals reported with supporting biochemical evidence.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1637 CDH2 Zornitza Stark gene: CDH2 was added
gene: CDH2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: CDH2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CDH2 were set to 31585109
Phenotypes for gene: CDH2 were set to Intellectual disability; corpus callosum abnormalities; congenital abnormalities
Review for gene: CDH2 was set to GREEN
Added comment: Nine unrelated individuals reported with de novo variants in this gene.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1634 NTNG2 Zornitza Stark gene: NTNG2 was added
gene: NTNG2 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: NTNG2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: NTNG2 were set to 31668703
Phenotypes for gene: NTNG2 were set to Intellectual disability; autism; dysmorphic features
Review for gene: NTNG2 was set to GREEN
Added comment: 16 individuals from 7 unrelated families.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1619 KCNN3 Alison Yeung gene: KCNN3 was added
gene: KCNN3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: KCNN3 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: KCNN3 were set to PMID: 31155282
Phenotypes for gene: KCNN3 were set to Zimmermann-Laband syndrome 3; OMIM# 618658
Review for gene: KCNN3 was set to GREEN
gene: KCNN3 was marked as current diagnostic
Added comment: Reported in three unrelated individuals
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1614 IQSEC1 Zornitza Stark gene: IQSEC1 was added
gene: IQSEC1 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: IQSEC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: IQSEC1 were set to 31607425
Phenotypes for gene: IQSEC1 were set to Intellectual developmental disorder with short stature and behavioral abnormalities, MIM# 618687
Review for gene: IQSEC1 was set to GREEN
Added comment: Five individuals from two unrelated families reported, animal model data.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1609 GPC4 Alison Yeung gene: GPC4 was added
gene: GPC4 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: GPC4 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: GPC4 were set to PMID: 30982611
Phenotypes for gene: GPC4 were set to Keipert syndrome OMIM# 301026
Review for gene: GPC4 was set to GREEN
gene: GPC4 was marked as current diagnostic
Added comment: >3 unrelated individuals reported, functional studies in mice
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1605 MAPK8IP3 Alison Yeung gene: MAPK8IP3 was added
gene: MAPK8IP3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: MAPK8IP3 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Publications for gene: MAPK8IP3 were set to 30612693
Phenotypes for gene: MAPK8IP3 were set to Neurodevelopmental disorder with or without variable brain abnormalities OMIM# 605431
Review for gene: MAPK8IP3 was set to GREEN
gene: MAPK8IP3 was marked as current diagnostic
Added comment: >3 reported individuals and functional evidence in Caenorhabditis elegans
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1598 TET3 Zornitza Stark gene: TET3 was added
gene: TET3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature
Mode of inheritance for gene: TET3 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: TET3 were set to 31928709
Phenotypes for gene: TET3 were set to Intellectual disability; dysmorphic features; abnormal growth; movement disorders
Review for gene: TET3 was set to GREEN
Added comment: Eleven individuals from 8 families described. Mono-allelic frameshift and nonsense variants occur throughout the coding region. Mono-allelic and bi-allelic missense variants localize to conserved residues; all but one such variant occur within the catalytic domain, and most display hypomorphic function in an assay of catalytic activity.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1522 AP2M1 Zornitza Stark gene: AP2M1 was added
gene: AP2M1 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Expert list
Mode of inheritance for gene: AP2M1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: AP2M1 were set to 31104773
Phenotypes for gene: AP2M1 were set to Intellectual developmental disorder 60 with seizures, MIM# 618587
Review for gene: AP2M1 was set to GREEN
Added comment: Four unrelated individuals reported, recurrent variant, NM_004068.3:c.508C>T or p.Arg170Trp.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1501 PUS3 Zornitza Stark gene: PUS3 was added
gene: PUS3 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Expert list
Mode of inheritance for gene: PUS3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PUS3 were set to 30308082; 28454995; 27055666; 30697592; 31444731
Phenotypes for gene: PUS3 were set to Mental retardation, autosomal recessive 55, MIM# 617051
Review for gene: PUS3 was set to GREEN
Added comment: Seven individuals from five families reported; two of the families had the same homozygous truncating variant. Variable features reported in addition to ID, including leukoencephalopathy, EE, and nephropathy.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1499 EIF3F Zornitza Stark gene: EIF3F was added
gene: EIF3F was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Expert list
Mode of inheritance for gene: EIF3F was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EIF3F were set to 30409806
Phenotypes for gene: EIF3F were set to Mental retardation, autosomal recessive 67, MIM# 618295
Review for gene: EIF3F was set to GREEN
Added comment: Nine individuals from 7 families reported, all homozygous for the same missense variant, p.(Phe232Val). This variant is present at 0.12% frequency in non-Finnish Europeans in gnomad (no homozygotes).
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1495 RSRC1 Zornitza Stark gene: RSRC1 was added
gene: RSRC1 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Expert list
Mode of inheritance for gene: RSRC1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: RSRC1 were set to 28640246; 29522154
Phenotypes for gene: RSRC1 were set to Intellectual developmental disorder, autosomal recessive 70, MIM# 618402
Review for gene: RSRC1 was set to AMBER
Added comment: Two unrelated families reported, 8 affected individuals.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1490 USP27X Zornitza Stark gene: USP27X was added
gene: USP27X was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Expert list
Mode of inheritance for gene: USP27X was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females
Publications for gene: USP27X were set to 25644381
Phenotypes for gene: USP27X were set to Mental retardation, X-linked 105, MIM#300984
Review for gene: USP27X was set to AMBER
Added comment: Four individuals from two unrelated families reported.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1486 ODC1 Zornitza Stark gene: ODC1 was added
gene: ODC1 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: ODC1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ODC1 were set to 30475435
Phenotypes for gene: ODC1 were set to Intellectual disability; macrocephaly; dysmorphism
Mode of pathogenicity for gene: ODC1 was set to Other
Review for gene: ODC1 was set to GREEN
Added comment: Four individuals with de novo GoF variants in this gene reported.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1484 RALA Zornitza Stark gene: RALA was added
gene: RALA was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: RALA was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RALA were set to 30500825
Phenotypes for gene: RALA were set to Intellectual disability; short stature; dysmorphism
Review for gene: RALA was set to GREEN
Added comment: Ten individuals with de novo variants in this gene, six of these at two codons only: Val25 and Lys128.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1481 TRPM3 Zornitza Stark gene: TRPM3 was added
gene: TRPM3 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: TRPM3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: TRPM3 were set to 31278393
Phenotypes for gene: TRPM3 were set to Intellectual disability; epilepsy
Review for gene: TRPM3 was set to GREEN
Added comment: 8 unrelated individuals with de novo variants in this gene. Recurrent variant p.(Val837Met) identified in 7/8.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1478 NUS1 Zornitza Stark gene: NUS1 was added
gene: NUS1 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: NUS1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: NUS1 were set to 31656175; 29100083
Phenotypes for gene: NUS1 were set to Epilepsy; intellectual disability
Review for gene: NUS1 was set to GREEN
Added comment: Five individuals reported with de novo variants in this gene and epilepsy/ID phenotype (4 truncating variants and a small deletion).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1476 UGP2 Zornitza Stark gene: UGP2 was added
gene: UGP2 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: UGP2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: UGP2 were set to 31820119
Phenotypes for gene: UGP2 were set to Epileptic encephalopathy; intellectual disability; microcephaly
Review for gene: UGP2 was set to GREEN
Added comment: 22 individuals from 15 families reported with the same homozygous missense variant in this gene, chr2:64083454A > G, which causes a disruption of the start codon in the shorter isoform, which is expressed in brain.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1465 NTRK2 Zornitza Stark gene: NTRK2 was added
gene: NTRK2 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Expert list
Mode of inheritance for gene: NTRK2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: NTRK2 were set to 15494731; 27884935; 29100083
Phenotypes for gene: NTRK2 were set to Obesity, hyperphagia, and developmental delay, MIM# 613886
Review for gene: NTRK2 was set to GREEN
Added comment: Three unrelated individuals reported with this phenotype.
Note recurrent missense in this gene also causes EE.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1463 GLS Zornitza Stark gene: GLS was added
gene: GLS was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: GLS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: GLS were set to 30970188
Phenotypes for gene: GLS were set to Global developmental delay, progressive ataxia, and elevated glutamine, MIM# 618412
Review for gene: GLS was set to AMBER
Added comment: Three unrelated individuals described with compound het variants, however, note one of these is a triplet expansion in the 5' UTR, this may not be tractable depending on sequencing modality.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1462 PPP1R12A Zornitza Stark Added comment: Comment when marking as ready: Now published, 12 individuals, upgraded to Green.
Intellectual disability syndromic and non-syndromic v0.1435 MN1 Zornitza Stark gene: MN1 was added
gene: MN1 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: MN1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: MN1 were set to 31834374; 31839203
Phenotypes for gene: MN1 were set to Intellectual disability; dysmophic features; rhombencephalosynapsis
Mode of pathogenicity for gene: MN1 was set to Other
Review for gene: MN1 was set to GREEN
Added comment: Over 20 individuals described with de novo truncating variants in this gene; these cluster in the C-terminal and the authors postulate that that syndrome is not due to MN1 haploinsufficiency but rather is the result of dominantly acting C-terminally truncated MN1 protein.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1433 EEF1B2 Zornitza Stark gene: EEF1B2 was added
gene: EEF1B2 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: EEF1B2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EEF1B2 were set to 31845318; 21937992
Phenotypes for gene: EEF1B2 were set to Intellectual disability
Review for gene: EEF1B2 was set to AMBER
Added comment: 5 individuals from two unrelated families described in the literature so far, no functional data but gene belongs to a family implicated in neurodevelopmental disorders.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1422 DSCAM Natasha Brown Added comment: Comment when marking as ready: Large cohort studies mean that individual phenotype data currently lacking in particular in relation to ID
Intellectual disability syndromic and non-syndromic v0.1414 ZFHX3 Zornitza Stark changed review comment from: Personal communication: Over 20 individuals with mostly de novo variants in this gene and mild ID/DD
Sources: Research; to: Emerging evidence.
Sources: Research
Intellectual disability syndromic and non-syndromic v0.1412 ZFHX3 Zornitza Stark gene: ZFHX3 was added
gene: ZFHX3 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Research
Mode of inheritance for gene: ZFHX3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: ZFHX3 were set to Intellectual disability
Review for gene: ZFHX3 was set to GREEN
Added comment: Personal communication: Over 20 individuals with mostly de novo variants in this gene and mild ID/DD
Sources: Research
Intellectual disability syndromic and non-syndromic v0.1410 USP7 Natasha Brown gene: USP7 was added
gene: USP7 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: USP7 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: USP7 were set to 30679821
Phenotypes for gene: USP7 were set to ID; Autism
Review for gene: USP7 was set to GREEN
Added comment: at least 16 individuals identified and 7 previous cases
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1406 SLC12A2 Zornitza Stark gene: SLC12A2 was added
gene: SLC12A2 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: SLC12A2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SLC12A2 were set to 30740830
Phenotypes for gene: SLC12A2 were set to Kilquist syndrome; deafness; intellectual disability; dysmorphic features; absent salivation
Review for gene: SLC12A2 was set to AMBER
Added comment: Single individual with bi-alllelic deletion described; mouse model recapitulated the phenotype.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1395 SCAMP5 Zornitza Stark Added comment: Comment when marking as ready: Two unrelated individuals and functional data, upgraded to Green.
Intellectual disability syndromic and non-syndromic v0.1392 POLR2A Sue White gene: POLR2A was added
gene: POLR2A was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: POLR2A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: POLR2A were set to 31353023
Phenotypes for gene: POLR2A were set to Neurodevelopmental disorder with hypotonia and variable intellectual and behavioral abnormalities, MIM# 618603
Mode of pathogenicity for gene: POLR2A was set to Other
Review for gene: POLR2A was set to GREEN
Added comment: 11 unrelated individuals reported with de novo variants in this gene. Missense variants postulated to exert a dominant-negative effect; LoF variants by contrast resulted in milder phenotype.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1379 ETS1 Zornitza Stark gene: ETS1 was added
gene: ETS1 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: ETS1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ETS1 were set to 31160359
Phenotypes for gene: ETS1 were set to Intellectual disability
Review for gene: ETS1 was set to RED
Added comment: Single individual with de novo truncating variant in this gene; gene is Jacobsen syndrome critical region.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1374 DYNC1I2 Zornitza Stark gene: DYNC1I2 was added
gene: DYNC1I2 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: DYNC1I2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DYNC1I2 were set to 31079899
Phenotypes for gene: DYNC1I2 were set to Neurodevelopmental disorder with microcephaly and structural brain anomalies , MIM#618492
Review for gene: DYNC1I2 was set to GREEN
Added comment: Five individuals from three unrelated families reported.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1372 DNAJA1 Zornitza Stark gene: DNAJA1 was added
gene: DNAJA1 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: DNAJA1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: DNAJA1 were set to 30972502
Phenotypes for gene: DNAJA1 were set to Intellectual disability; seizures
Review for gene: DNAJA1 was set to RED
Added comment: Single family with multiple affected individuals reported with bi-allelic truncating variant in this gene.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1370 DLL1 Zornitza Stark gene: DLL1 was added
gene: DLL1 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: DLL1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DLL1 were set to 31353024
Phenotypes for gene: DLL1 were set to Intellectual disability; autism; seizures; variable brain abnormalities; scoliosis
Review for gene: DLL1 was set to GREEN
Added comment: Fifteen individuals from 12 unrelated families reported.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1368 DDX6 Zornitza Stark gene: DDX6 was added
gene: DDX6 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: DDX6 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: DDX6 were set to 31422817,
Phenotypes for gene: DDX6 were set to Intellectual developmental disorder with impaired language and dysmorphic facies, MIM#618653
Review for gene: DDX6 was set to GREEN
Added comment: Five unrelated individuals reported with 5 different de novo heterozygous missense mutations in exon 11 of the DDX6 gene. All variants occurred at conserved residues in either the QxxR or V motifs within the second RecA-2 domain of the helicase core; this region is involved in RNA and/or ATP binding, suggesting functional consequences.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1366 CYFIP2 Zornitza Stark gene: CYFIP2 was added
gene: CYFIP2 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: CYFIP2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CYFIP2 were set to 29534297
Phenotypes for gene: CYFIP2 were set to Epileptic encephalopathy, early infantile, 65, MIM#618008
Review for gene: CYFIP2 was set to GREEN
Added comment: Four unrelated individuals with de novo variants in this gene. All variants affected the same highly conserved residue (arg87) in the DUF1394 domain.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1361 FBXL3 Chirag Patel gene: FBXL3 was added
gene: FBXL3 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: FBXL3 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FBXL3 were set to PubMed: 30481285
Phenotypes for gene: FBXL3 were set to Intellectual developmental disorder with short stature, facial anomalies, and speech defects; OMIM #606220
Review for gene: FBXL3 was set to AMBER
Added comment: 3 unrelated families with 8 affected individuals with ID, DD, short stature and mild facial dysmorphism, and with homozygous mutations in FBXL3. Segregated with the disorder in all 3 families. Functional studies of the variants and studies of patient cells were not performed.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1358 FRY Chirag Patel gene: FRY was added
gene: FRY was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: FRY was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FRY were set to PMID: 31487712; 27457812; 21937992
Phenotypes for gene: FRY were set to no OMIM number yet
Review for gene: FRY was set to AMBER
Added comment: 1 patient with ID/DD and a novel homozygous deletion involving FRY gene identified by genomic SNP microarray. No functional evidence.

2 consanguineous families with 6 affected individuals with ID, and homozygous mutations of FRY. No functional evidence.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1352 CDK8 Zornitza Stark gene: CDK8 was added
gene: CDK8 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: CDK8 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CDK8 were set to 30905399
Phenotypes for gene: CDK8 were set to Intellectual disability; dysmorphism; congenital abnormalities; seizures
Review for gene: CDK8 was set to GREEN
Added comment: 12 unrelated individuals, missense variants demonstrated as de novo in 10. All variants localize to the ATP-binding pocket of the kinase domain.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1346 KDM3B Chirag Patel gene: KDM3B was added
gene: KDM3B was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: KDM3B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KDM3B were set to PMID: 30929739
Phenotypes for gene: KDM3B were set to no OMIM number yet
Review for gene: KDM3B was set to GREEN
Added comment: 14 unrelated individuals and 3 affected parents with varying degrees of ID, DD, short stature, dysmorphism, and de novo or inherited pathogenic variants in KDM3B. No functional studies.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1344 LMAN2L Chirag Patel gene: LMAN2L was added
gene: LMAN2L was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: LMAN2L was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: LMAN2L were set to PMID: 31020005; 26566883
Phenotypes for gene: LMAN2L were set to ?Mental retardation, autosomal recessive, 52; OMIM #616887
Review for gene: LMAN2L was set to AMBER
Added comment: 1 consanguineous family with 7 individuals with ID and epilepsy, with homozygous LMAN2L missense mutation. Segregated with disease in family, and unaffected family members were heterozygous variant carriers. No functional studies.

1 non-consanguineous family with 4 affected with heterozygous frameshift LMAN2L mutation. Segregates in family. Mutation eliminates LMAN2L's endoplasmic reticulum retention signal and mislocalizes the protein from that compartment to the plasma membrane.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1343 LSM1 Chirag Patel gene: LSM1 was added
gene: LSM1 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: LSM1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LSM1 were set to PMID: 31010896
Phenotypes for gene: LSM1 were set to no OMIM number yet
Review for gene: LSM1 was set to RED
Added comment: 1 family with 2 siblings with global DD, multiple congenital anomalies, and abnormal eye movements, with homozygous splice variant in LSM1. Segregated with the phenotype in the family. Expression studies revealed absence of expression of the canonical isoform in the affected individuals. The Lsm1 knockout mice have a partially overlapping phenotype that affects the brain, heart, and eye.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1341 LSS Chirag Patel gene: LSS was added
gene: LSS was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: LSS was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LSS were set to PMID: 30723320
Phenotypes for gene: LSS were set to Cataract 44, OMIM #616509; Hypotrichosis 14, OMIM #618275
Review for gene: LSS was set to GREEN
Added comment: Expanded the phenotypic spectrum of LSS to a recessive neuroectodermal syndrome formerly named alopecia with mental retardation (APMR) syndrome. Ten APMR individuals from 6 unrelated families with biallelic variants in LSS. Quantification of cholesterol and its precursors did not reveal noticeable imbalance.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1340 MACROD2 Chirag Patel gene: MACROD2 was added
gene: MACROD2 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: MACROD2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: MACROD2 were set to PMID: 31055587
Phenotypes for gene: MACROD2 were set to no OMIM number yet
Review for gene: MACROD2 was set to RED
Added comment: 1 family with a few affected with microcephaly, ID, dysmorphic features, and polydactyly. Deletion of chromosome 20p12.1 involving the MACROD2 gene was found in several members of the family. qRT-PCR showed higher levels of a MACROD2 mRNA isoform in the individuals carrying the deletion.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1328 PAK1 Chirag Patel gene: PAK1 was added
gene: PAK1 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: PAK1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PAK1 were set to PMID: 31504246; 30290153
Phenotypes for gene: PAK1 were set to Intellectual developmental disorder with macrocephaly, seizures, and speech delay; OMIM #618158
Review for gene: PAK1 was set to GREEN
Added comment: 2 unrelated individuals with de novo PAK1 mutations, with developmental delay, secondary macrocephaly, seizures, and ataxic gait. Enhanced phosphorylation of the PAK1 targets JNK and AKT shown in fibroblasts of one subject and of c-JUN in those of both subjects compared with control subjects. In fibroblasts of the 2 affected individuals, they observed a trend toward enhanced PAK1 kinase activity. By using co-immunoprecipitation and size-exclusion chromatography, they observed a significantly reduced dimerization for both PAK1 mutants compared with wild-type PAK1.

4 unrelated individuals with intellectual disability, macrocephaly and seizures, with de novo heterozygous missense variants in PAK1.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1326 PHF21A Chirag Patel gene: PHF21A was added
gene: PHF21A was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: PHF21A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PHF21A were set to PMID: 31649809; 30487643; 22770980
Phenotypes for gene: PHF21A were set to no OMIM number yet.
Review for gene: PHF21A was set to GREEN
Added comment: 9 cases with intellectual disability and craniofacial anomalies (Potocki-Shaffer syndrome), with de novo truncating variants in PHF21A. No functional evidence of variants, but PHF21A is highly expressed in the human fetal brain, which is consistent with the neurodevelopmental phenotype.

2 other unrelated individuals with translocations disrupting PHF21A. Lymphoblastoid cell lines from translocation subjects showed derepression of the neuronal gene SCN3A and reduced LSD1 occupancy at the SCN3A promoter, supporting a direct functional consequence of PHF21A haploinsufficiency on transcriptional regulation.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1324 PIBF1 Chirag Patel gene: PIBF1 was added
gene: PIBF1 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: PIBF1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PIBF1 were set to PubMed: 26167768; 30858804; 29695797
Phenotypes for gene: PIBF1 were set to Joubert syndrome 33; OMIM #617767
Review for gene: PIBF1 was set to GREEN
Added comment: 1 family of Schmiedeleut Hutterite descent with 2 affected brothers with Joubert syndrome had homozygous missense mutation in PIBF1 gene. Parents were heterozygous.

2 other Hutterite families with 3 affected children and same homozygous missense mutation in PIBF1 gene, suggesting a founder effect.

2 other unrelated individuals with compound heterozygous mutations in PIBF1 gene.

1 unrelated individual with compound heterozygous variants in PIBF1 gene, and functional evidence in the frog Xenopus.

1 unrelated individual with another homozygous missense mutation in PIBF1 gene, but no and functional evidence.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1320 PIGU Chirag Patel gene: PIGU was added
gene: PIGU was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: PIGU was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PIGU were set to PMID: 31353022
Phenotypes for gene: PIGU were set to Glycosylphosphatidylinositol biosynthesis defect 21; OMIM #618590
Review for gene: PIGU was set to GREEN
Added comment: 5 patients from 3 unrelated families, with homozygous missense mutations in the PIGU gene. All individuals presented with global DD, severe-to-profound ID, muscular hypotonia, seizures, brain anomalies, scoliosis, and mild facial dysmorphism. Flow cytometric analysis of patient granulocytes showed a characteristic pattern, with reduced cell surface expression of CD16 and CD24. In addition, patient B cells showed increased expression of free GPI anchors determined by a specific antibody, T5. The findings suggested that PIGU mutations reduce the function of the GPI transamidase complex, leading to accumulation of free GPI anchors on the cell surface.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1317 PISD Chirag Patel changed review comment from: 4 individuals in 2 unrelated but consanguineous families from Portugal and Brazil affected by early-onset retinal degeneration, sensorineural hearing loss, microcephaly, intellectual disability, and skeletal dysplasia with scoliosis and short stature (Liberfarb syndrome). Affected individuals shared a homozygous 10-bp deletion immediately upstream of the last exon of the PISD gene. In HEK293T cells, this variant led to aberrant splicing of PISD transcripts.
Sources: Literature; to: 4 individuals in 2 unrelated but consanguineous families from Portugal and Brazil affected by early-onset retinal degeneration, sensorineural hearing loss, microcephaly, intellectual disability, and skeletal dysplasia with scoliosis and short stature (Liberfarb syndrome). Affected individuals shared a homozygous 10-bp deletion immediately upstream of the last exon of the PISD gene. In HEK293T cells, this variant led to aberrant splicing of PISD transcripts.

1 family with 2 sisters with congenital cataracts, short stature, and white matter changes identified compound heterozygous variants in the PISD gene. Decreased conversion of phosphatidylserine to PE in patient fibroblasts is consistent with impaired phosphatidylserine decarboxylase (PISD) enzyme activity.
Intellectual disability syndromic and non-syndromic v0.1317 PISD Chirag Patel gene: PISD was added
gene: PISD was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: PISD was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PISD were set to PMID: 31263216
Phenotypes for gene: PISD were set to no OMIM number yet.
Review for gene: PISD was set to AMBER
Added comment: 4 individuals in 2 unrelated but consanguineous families from Portugal and Brazil affected by early-onset retinal degeneration, sensorineural hearing loss, microcephaly, intellectual disability, and skeletal dysplasia with scoliosis and short stature (Liberfarb syndrome). Affected individuals shared a homozygous 10-bp deletion immediately upstream of the last exon of the PISD gene. In HEK293T cells, this variant led to aberrant splicing of PISD transcripts.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1315 POU3F3 Chirag Patel gene: POU3F3 was added
gene: POU3F3 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: POU3F3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: POU3F3 were set to PMID: 24550763; 31303265
Phenotypes for gene: POU3F3 were set to no OMIM number yet.
Review for gene: POU3F3 was set to GREEN
Added comment: 19 individuals with DD/ID/speech issues and heterozygous POU3F3 disruptions, most of which were de novo variants. Positive functional cell-based analyses of pathogenic variants.

1 patient reported with whole gene deletion and ID.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1313 PPP2CA Chirag Patel gene: PPP2CA was added
gene: PPP2CA was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: PPP2CA was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PPP2CA were set to PMID: 30595372
Phenotypes for gene: PPP2CA were set to Neurodevelopmental disorder and language delay with or without structural brain abnormalities; OMIM #618354
Review for gene: PPP2CA was set to GREEN
Added comment: 15 unrelated patients with a neurodevelopmental disorder with de novo heterozygous PPP2CA mutations, and 1 with partial deletion of PPP2CA. Functional studies showed complete PP2A dysfunction in 4 individuals with seemingly milder ID, hinting at haploinsufficiency. Ten other individuals showed mutation-specific biochemical distortions, including poor expression, altered binding to the A subunit and specific B-type subunits, and impaired phosphatase activity and C-terminal methylation.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1309 RNF113A Chirag Patel gene: RNF113A was added
gene: RNF113A was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: RNF113A was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males)
Publications for gene: RNF113A were set to PMID: 25612912; 31793730
Phenotypes for gene: RNF113A were set to ?Trichothiodystrophy 5, nonphotosensitive; OMIM #300953
Review for gene: RNF113A was set to AMBER
Added comment: 1 family of 2 male cousins with IUGR, progressive microcephaly, profound ID, genital anomalies, and severe linear growth failure, and nonsense Q301X mutation in RNF113A gene. Segregated with disease in the family. The mutation markedly reduced RNF113A protein expression in extracts from lymphoblastoid cell lines derived from the affected individuals.

2 fetuses affected with abnormalities similar to previous report, with the same nonsense Q301X mutation in RNF113A gene (can not access paper to see if from same family or functional evidence).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1307 SCAMP5 Chirag Patel gene: SCAMP5 was added
gene: SCAMP5 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: SCAMP5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SCAMP5 were set to PMID: 31439720
Phenotypes for gene: SCAMP5 were set to no OMIM number yet
Review for gene: SCAMP5 was set to AMBER
Added comment: 2 unrelated individuals with ASD, ID and seizures, with the same heterozygous de novo variant in SCAMP5 (p.Gly302Trp). Western blot analysis of proteins overexpressed in the Drosophila fat body showed strongly reduced levels of the SCAMP p.Gly302Trp protein compared with the wild-type protein, indicating that the mutant either reduced expression or increased turnover of the protein. The expression of the fly homologue of the human SCAMP5 p.Gly180Trp mutation caused similar eye and neuronal phenotypes as the expression of SCAMP RNAi, suggesting a dominant-negative effect.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1303 BRSK2 Zornitza Stark gene: BRSK2 was added
gene: BRSK2 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: BRSK2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: BRSK2 were set to 30879638
Phenotypes for gene: BRSK2 were set to Intellectual disability; autism
Review for gene: BRSK2 was set to GREEN
Added comment: Nine unrelated individuals with heterozygous variants in this gene; six confirmed de novo (parents available).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1298 SMARCC2 Chirag Patel gene: SMARCC2 was added
gene: SMARCC2 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: SMARCC2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SMARCC2 were set to PMID: 30580808
Phenotypes for gene: SMARCC2 were set to Coffin-Siris syndrome 8; OMIM #618362
Review for gene: SMARCC2 was set to GREEN
Added comment: 15 individuals with variable degrees of neurodevelopmental delay, growth retardation, prominent speech impairment, hypotonia, feeding difficulties, behavioral abnormalities, and dysmorphic features. They found heterozygous de novo SMARCC2 variants, but no functional evidence of specific variants. Transcriptomic analysis of fibroblasts from affected individuals highlighted a group of differentially expressed genes with possible roles in regulation of neuronal development and function, namely H19, SCRG1, RELN, and CACNB4.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1296 SMARCD1 Chirag Patel gene: SMARCD1 was added
gene: SMARCD1 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: SMARCD1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: SMARCD1 were set to PMID: 30879640
Phenotypes for gene: SMARCD1 were set to no OMIM number yet
Review for gene: SMARCD1 was set to GREEN
Added comment: 5 individuals with heterozygous SMARCD1 variants (4 de novo, 1 unk), and developmental delay, intellectual disability, hypotonia, feeding difficulties, dysmorphisms, and small hands and feet. No functional evidence of some variants was not conclusive with immunoblot or co-immunoprecipitation studies. Targeted knockdown of Drosophila ortholog Bap60 in the mushroom body of adult flies causes defects in long-term memory. Mushroom-body-specific transcriptome analysis revealed that Bap60 is required for context-dependent expression of genes involved in neuron function and development in juvenile flies when synaptic connections are actively being formed in response to experience. T
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1294 BCL11B Zornitza Stark gene: BCL11B was added
gene: BCL11B was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: BCL11B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: BCL11B were set to 29985992
Phenotypes for gene: BCL11B were set to Intellectual developmental disorder with dysmorphic facies, speech delay, and T-cell abnormalities, MIM# 618092
Review for gene: BCL11B was set to GREEN
Added comment: Nine unrelated individuals, all but one with de novo variants in this gene and syndromic ID/immunodeficiency. Most variants located in the last exon (exon 4) and are predicted to escape nonsense-mediated mRNA decay.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1285 ATN1 Zornitza Stark gene: ATN1 was added
gene: ATN1 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: ATN1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: ATN1 were set to 30827498
Phenotypes for gene: ATN1 were set to Congenital hypotonia, epilepsy, developmental delay, and digital anomalies, MIM#618494
Review for gene: ATN1 was set to GREEN
Added comment: Eight unrelated individuals with de novo heterozygous variants in this gene and syndromic ID; all variants result in substitutions within the highly conserved 16-amino acid histidine-rich 'HX repeat' motif near the C terminus.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1279 APC2 Zornitza Stark gene: APC2 was added
gene: APC2 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: APC2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: APC2 were set to 31585108
Phenotypes for gene: APC2 were set to Cortical dysplasia, complex, with other brain malformations 10, MIM#618677
Review for gene: APC2 was set to GREEN
Added comment: 12 individuals from 8 unrelated families; intellectual disability, seizures, cortical dysplasia including posterior to anterior predominant pattern of lissencephaly, heterotopias, paucity of white matter, thin corpus callosum.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1277 VAMP2 Chirag Patel gene: VAMP2 was added
gene: VAMP2 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: VAMP2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: VAMP2 were set to PMID: 30929742
Phenotypes for gene: VAMP2 were set to no OMIM number yet
Review for gene: VAMP2 was set to GREEN
Added comment: 5 unrelated patients with heterozygous de novo mutations in VAMP2, presenting with a neurodevelopmental disorder characterized by axial hypotonia, intellectual disability, and autistic features. Affected individuals carrying de novo non-synonymous variants involving the C-terminal region presented a more severe phenotype with additional neurological features, including central visual impairment, hyperkinetic movement disorder, and epilepsy or electroencephalography abnormalities. Reconstituted fusion involving a lipid-mixing assay indicated impairment in vesicle fusion as one of the possible associated disease mechanisms.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1268 ACTL6B Zornitza Stark gene: ACTL6B was added
gene: ACTL6B was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: ACTL6B was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: ACTL6B were set to 31134736; 31031012; 30656450; 30237576
Phenotypes for gene: ACTL6B were set to Epileptic encephalopathy, early infantile, 76, MIM# 618468; Intellectual developmental disorder with severe speech and ambulation defects, MIM# 618470
Review for gene: ACTL6B was set to GREEN
Added comment: Multiple affected individuals reported, main phenotype is ID/EE.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1158 SELENOI Zornitza Stark gene: SELENOI was added
gene: SELENOI was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Expert list
Mode of inheritance for gene: SELENOI was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: SELENOI were set to 28052917
Phenotypes for gene: SELENOI were set to developmental delay; spasticity; periventricular white mater abnormalities; peripheral neuropathy; seizures; bifid uvula in some affected individuals; microcephaly
Review for gene: SELENOI was set to RED
Added comment: Single family only, four sibs, supportive biochemical evidence. Borderline amber/red gene, only mild ID described, seems to be more of a progressive neurometabolic condition based on limited evidence.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1093 RORA Zornitza Stark gene: RORA was added
gene: RORA was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Expert list
Mode of inheritance for gene: RORA was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RORA were set to 29656859
Phenotypes for gene: RORA were set to Intellectual developmental disorder with or without epilepsy or cerebellar ataxia, MIM#618060
Mode of pathogenicity for gene: RORA was set to Other
Review for gene: RORA was set to GREEN
Added comment: Eleven unrelated individuals with de novo variants in this gene; postulated that some variants exert dominant-negative effect resulting in a more severe phenotype than the LoF variants.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.1083 RHOBTB2 Zornitza Stark gene: RHOBTB2 was added
gene: RHOBTB2 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: RHOBTB2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: RHOBTB2 were set to 29768694; 29276004
Phenotypes for gene: RHOBTB2 were set to Epileptic encephalopathy, early infantile, 64, MIM#618004
Review for gene: RHOBTB2 was set to GREEN
Added comment: 13 individuals from unrelated families reported in the literature in 2018 with de novo variants in this gene and ID/EE.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.1022 PRR12 Zornitza Stark gene: PRR12 was added
gene: PRR12 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: PRR12 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PRR12 were set to 29556724
Review for gene: PRR12 was set to GREEN
Added comment: Three unrelated individuals reported with de novo LoF variants; in addition, another individual with translocation disrupting gene.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.953 PHIP Zornitza Stark gene: PHIP was added
gene: PHIP was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Expert list
Mode of inheritance for gene: PHIP was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: PHIP were set to 29209020; 27900362; 23033978
Phenotypes for gene: PHIP were set to Chung-Jansen syndrome, MIM#617991
Review for gene: PHIP was set to GREEN
Added comment: Recent large case series describing 20 individuals; variable expressivity, some inherited from mildly affected parents, most de novo.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.933 OXR1 Zornitza Stark gene: OXR1 was added
gene: OXR1 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: OXR1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: OXR1 were set to 31785787
Phenotypes for gene: OXR1 were set to Intellectual disability; seizures; cerebellar atrophy
Review for gene: OXR1 was set to GREEN
Added comment: Five individuals from three families.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.931 TMX2 Zornitza Stark gene: TMX2 was added
gene: TMX2 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Literature
Mode of inheritance for gene: TMX2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: TMX2 were set to 31735293; 31586943
Phenotypes for gene: TMX2 were set to Microcephaly; ID; brain malformations
Review for gene: TMX2 was set to GREEN
Added comment: 14 individuals from 10 unrelated families with bi-allelic variants in this gene (31735293) and another four families with recurrent variant (31586943).
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.926 PCYT2 Zornitza Stark gene: PCYT2 was added
gene: PCYT2 was added to Intellectual disability, syndromic and non-syndromic_GHQ_VCGS. Sources: Expert Review
Mode of inheritance for gene: PCYT2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PCYT2 were set to 31637422
Phenotypes for gene: PCYT2 were set to Global developmental delay with regression; spastic para- or tetra paresis; epilepsy; progressive cerebral and cerebellar atrophy
Review for gene: PCYT2 was set to GREEN
Added comment: Five unrelated individuals. Variants are hypomorphic.
Sources: Expert Review
Intellectual disability syndromic and non-syndromic v0.893 NUP62 Zornitza Stark Added comment: Comment when marking as ready: Multiple affected individuals, age of onset variable, may be after viral trigger.
Intellectual disability syndromic and non-syndromic v0.866 NFIB Zornitza Stark gene: NFIB was added
gene: NFIB was added to Intellectual disability, syndromic and non-syndromic_GHQ. Sources: Expert list
Mode of inheritance for gene: NFIB was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: NFIB were set to 30388402
Phenotypes for gene: NFIB were set to Macrocephaly, acquired, with impaired intellectual development, MIM#618286
Review for gene: NFIB was set to GREEN
Added comment: 18 individuals reported, of whom 11 had deletions of this gene and the rest had SNVs.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.798 ADRA2B Zornitza Stark gene: ADRA2B was added
gene: ADRA2B was added to Intellectual disability, syndromic and non-syndromic_GHQ. Sources: Expert list
Mode of inheritance for gene: ADRA2B was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Publications for gene: ADRA2B were set to 24114805; 21937992
Phenotypes for gene: ADRA2B were set to Cortical myoclonus and epilepsy; Intellectual disability
Review for gene: ADRA2B was set to RED
Added comment: Two families reported but same mutation, ?founder effect. Most affected individuals had normal intellect.
Another paper linking to AR intellectual disability but as part of manuscript reporting multiple novel candidates.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.589 LINGO1 Zornitza Stark gene: LINGO1 was added
gene: LINGO1 was added to Intellectual disability, syndromic and non-syndromic_GHQ. Sources: Expert list
Mode of inheritance for gene: LINGO1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: LINGO1 were set to 28837161
Phenotypes for gene: LINGO1 were set to Mental retardation, autosomal recessive 64, MIM#618103
Review for gene: LINGO1 was set to GREEN
Added comment: Five individuals from two unrelated families, no functional evidence.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.575 KMT5B Zornitza Stark gene: KMT5B was added
gene: KMT5B was added to Intellectual disability, syndromic and non-syndromic_GHQ. Sources: Expert list
Mode of inheritance for gene: KMT5B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KMT5B were set to 25363768; 28191889; 29276005
Phenotypes for gene: KMT5B were set to Mental retardation, autosomal dominant 51, MIM#617788
Review for gene: KMT5B was set to GREEN
Added comment: Multiple affected individuals from unrelated families.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.553 KDM6B Zornitza Stark gene: KDM6B was added
gene: KDM6B was added to Intellectual disability, syndromic and non-syndromic_GHQ. Sources: Expert list
Mode of inheritance for gene: KDM6B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KDM6B were set to 31124279
Phenotypes for gene: KDM6B were set to Intellectual disability
Review for gene: KDM6B was set to GREEN
Added comment: 12 unrelated individuals with de novo variants in this gene, no functional evidence reported but KDM6B involved in histone methylation.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.524 TRMT1 Chirag Patel edited their review of gene: TRMT1: Added comment: 4 families reported:
-1 consanguineous Iranian family with 5 individuals with nonsyndromic moderate to severe impaired intellectual development.
-1 consanguineous Iranian family with 3 adult brothers with global developmental delay and moderately delayed intellectual development
-2 unrelated Pakistani families with 4 patients with impaired intellectual development.
All with homozygous mutations in the TRMT1 gene which segregated with the disorder in the families, but functional studies of the variants were not performed.; Changed publications: PMID: 30289604, 26308914, 21937992
Intellectual disability syndromic and non-syndromic v0.491 IREB2 Zornitza Stark gene: IREB2 was added
gene: IREB2 was added to Intellectual disability, syndromic and non-syndromic_GHQ. Sources: Literature
Mode of inheritance for gene: IREB2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: IREB2 were set to 30915432; 31243445; 11175792
Phenotypes for gene: IREB2 were set to Neurodegeneration, early-onset, with choreoathetoid movements and microcytic anemia, MIM#618451
Review for gene: IREB2 was set to GREEN
Added comment: Two affected individuals from unrelated families with functional evidence including concordant phenotype in mice.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.394 VPS37A Chirag Patel changed review comment from: ID reported in this type of HSP in 2 families.

Zivony-Elboum et al. (2012) reported 9 patients from 2 Arab Moslem families with early-onset spastic paraplegia. Affected individuals showed developmental and motor delay during the first 2 years of life. They had unsteadiness in standing and difficulty walking. All affected children presented with spasticity in the lower limbs that progressed to the upper extremities. All had mild to moderate cognitive and speech delay.; to: ID reported in this type of HSP in 2 families.

Zivony-Elboum et al. (2012) reported 9 patients from 2 Arab Moslem families with early-onset spastic paraplegia. Affected individuals showed developmental and motor delay during the first 2 years of life. They had unsteadiness in standing and difficulty walking. All affected children presented with spasticity in the lower limbs that progressed to the upper extremities. All had mild to moderate cognitive and speech delay. Functional studied performed.
Intellectual disability syndromic and non-syndromic v0.362 WASF1 Chirag Patel edited their review of gene: WASF1: Added comment: 5 unrelated individuals with moderate to profound intellectual disability with autistic features and seizures. Functional studies using fibroblast cells from two affected individuals showed a truncated WASF1 and a defect in actin remodeling.; Changed phenotypes: No OMIM phenotype # yet.
Intellectual disability syndromic and non-syndromic v0.302 ZNF41 Chirag Patel changed review comment from: Shoichet et al. (2003) described a female patient with severe nonsyndromic mental retardation and a de novo balanced translocation t(X;7)(p11.3;q11.21) in whom they cloned the DNA fragment that contained the X chromosomal and the autosomal breakpoint. In silico sequence analysis demonstrated that the ZNF41 gene was disrupted. Expression studies indicated that ZNF41 transcripts were absent in the patient cell line, suggesting that the mental disorder in this patient resulted from loss of functional ZNF41. Moreover, screening of a panel of patients with MRX led to the identification of 2 other ZNF41 mutations (314995.0001-314995.0002) that were not found in healthy control individuals. Based on their finding of the mutations in ZNF41 identified by Shoichet et al. (2003) in a total of 7 males in the NHLBI Exome Variant Server, and the additional finding of truncating ZNF41 variants in 1 male and 1 female in that database, Piton et al. (2013) classified the involvement of ZNF41 in mental retardation as highly questionable.; to: Shoichet et al. (2003) described a female patient with severe nonsyndromic mental retardation and a de novo balanced translocation t(X;7)(p11.3;q11.21) in whom they cloned the DNA fragment that contained the X chromosomal and the autosomal breakpoint. In silico sequence analysis demonstrated that the ZNF41 gene was disrupted. Expression studies indicated that ZNF41 transcripts were absent in the patient cell line, suggesting that the mental disorder in this patient resulted from loss of functional ZNF41. Screening of patients with mental retardation led to the identification of 2 other ZNF41 mutations that were not found in healthy control individuals. Based on their finding of the mutations in ZNF41 identified by Shoichet et al. (2003) in a total of 7 males in the NHLBI Exome Variant Server, and the additional finding of truncating ZNF41 variants in 1 male and 1 female in that database, Piton et al. (2013) classified the involvement of ZNF41 in mental retardation as highly questionable.
Intellectual disability syndromic and non-syndromic v0.250 FUT8 Zornitza Stark gene: FUT8 was added
gene: FUT8 was added to Intellectual disability, syndromic and non-syndromic_GHQ. Sources: Expert list
Mode of inheritance for gene: FUT8 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FUT8 were set to 29304374
Phenotypes for gene: FUT8 were set to Congenital disorder of glycosylation with defective fucosylation 1, MIM#618005
Review for gene: FUT8 was set to GREEN
Added comment: Three unrelated individuals reported with bi-allelic variants in this gene.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.231 FDFT1 Zornitza Stark gene: FDFT1 was added
gene: FDFT1 was added to Intellectual disability, syndromic and non-syndromic_GHQ. Sources: Expert list
Mode of inheritance for gene: FDFT1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: FDFT1 were set to 29909962
Phenotypes for gene: FDFT1 were set to Squalene synthase deficiency, MIM#618156
Review for gene: FDFT1 was set to GREEN
Added comment: Three individuals from two unrelated families reported; metabolic disorder with good level of biochemical evidence to support gene-disease association..
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.195 EXOSC2 Zornitza Stark gene: EXOSC2 was added
gene: EXOSC2 was added to Intellectual disability, syndromic and non-syndromic_GHQ. Sources: Expert list
Mode of inheritance for gene: EXOSC2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: EXOSC2 were set to 26843489; 31628467
Phenotypes for gene: EXOSC2 were set to Short stature, hearing loss, retinitis pigmentosa, and distinctive facies, MIM# 617763
Review for gene: EXOSC2 was set to GREEN
Added comment: Three individuals from two families, but founder mutation, some functional data.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.89 DDX59 Zornitza Stark commented on gene: DDX59: Some affected individuals are reported as having ID.
Intellectual disability syndromic and non-syndromic v0.10 CHD3 Zornitza Stark gene: CHD3 was added
gene: CHD3 was added to Intellectual disability, syndromic and non-syndromic_GHQ. Sources: Expert list
Mode of inheritance for gene: CHD3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CHD3 were set to 30397230
Phenotypes for gene: CHD3 were set to Snijders Blok-Campeau syndrome, MIM#618205
Review for gene: CHD3 was set to GREEN
gene: CHD3 was marked as current diagnostic
Added comment: 35 individuals from 33 unrelated families reported with heterozygous variants in this gene.
Sources: Expert list
Intellectual disability syndromic and non-syndromic v0.9 CHD1 Zornitza Stark gene: CHD1 was added
gene: CHD1 was added to Intellectual disability, syndromic and non-syndromic_GHQ. Sources: Literature
Mode of inheritance for gene: CHD1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: CHD1 were set to 28866611
Phenotypes for gene: CHD1 were set to Pilarowski-Bjornsson syndrome, MIM#617682
Review for gene: CHD1 was set to GREEN
Added comment: Six unrelated individuals with heterozygous variants reported.
Sources: Literature
Intellectual disability syndromic and non-syndromic v0.0 ALG14 Zornitza Stark edited their review of gene: ALG14: Added comment: 5 individuals from unrelated families described in the literature: one with myasthenic syndrome, no report of ID; second with predominantly ID phenotype; and three more with a neurodegenerative phenotype.; Changed rating: GREEN; Changed publications: 30221345, 23404334, 28733338
Intellectual disability syndromic and non-syndromic v0.0 IDUA Zornitza Stark gene: IDUA was added
gene: IDUA was added to Intellectual disability, syndromic and non-syndromic_GHQ. Sources: Expert Review Green,Genetic Health Queensland
Mode of inheritance for gene: IDUA was set to Unknown