BabyScreen+ newborn screening
Gene: GLIS3 Green List (high evidence)Green List (high evidence)
Other similar disorders included; include for consistency.Created: 5 Mar 2023, 5:29 a.m. | Last Modified: 5 Mar 2023, 5:29 a.m.
Panel Version: 0.1883
Mode of inheritance
BIALLELIC, autosomal or pseudoautosomal
Phenotypes
Diabetes mellitus, neonatal, with congenital hypothyroidism MIM#610199
I don't know
Babyseq C, on GUARDIAN and RxGenes
IUGR, neonatal diabetes, cystic renal disease, hepatitis and dysmorphic facial features
developmental delay
high early mortality but components of disease are treatable (death due to renal disease and hepatic fibrosis and sepsis)
Treat insulin and thyroxine as per Rx genes
Possible new drug treatments evolving but no clinical trials yet.
Infants would present so maybe best left for diagnostic ? but does sort of fit our criteria...Created: 24 Feb 2023, 10:41 a.m. | Last Modified: 24 Feb 2023, 10:41 a.m.
Panel Version: 0.1872
Mode of inheritance
BIALLELIC, autosomal or pseudoautosomal
Phenotypes
Diabetes mellitus, neonatal, with congenital hypothyroidism MIM#610199
Publications
Gene: glis3 has been classified as Green List (High Evidence).
Phenotypes for gene: GLIS3 were changed from Diabetes mellitus, neonatal, with congenital hypothyroidism; Diabetes mellitus, neonatal, with congenital hypothyroidism, MIM# 610199 to Diabetes mellitus, neonatal, with congenital hypothyroidism MIM#610199
Publications for gene: GLIS3 were set to
Gene: glis3 has been classified as Green List (High Evidence).
Tag treatable tag was added to gene: GLIS3. Tag endocrine tag was added to gene: GLIS3.
Source Expert Review Red was added to GLIS3. Source BabySeq Category C gene was added to GLIS3. Added phenotypes Diabetes mellitus, neonatal, with congenital hypothyroidism for gene: GLIS3 Rating Changed from Green List (high evidence) to Red List (low evidence)
gene: GLIS3 was added gene: GLIS3 was added to gNBS. Sources: BeginNGS,Expert Review Green Mode of inheritance for gene: GLIS3 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: GLIS3 were set to Diabetes mellitus, neonatal, with congenital hypothyroidism, MIM# 610199
If promoting or demoting a gene, please provide comments to justify a decision to move it.
Genes included in a Genomics England gene panel for a rare disease category (green list) should fit the criteria A-E outlined below.
These guidelines were developed as a combination of the ClinGen DEFINITIVE evidence for a causal role of the gene in the disease(a), and the Developmental Disorder Genotype-Phenotype (DDG2P) CONFIRMED DD Gene evidence level(b) (please see the original references provided below for full details). These help provide a guideline for expert reviewers when assessing whether a gene should be on the green or the red list of a panel.
A. There are plausible disease-causing mutations(i) within, affecting or encompassing an interpretable functional region(ii) of this gene identified in multiple (>3) unrelated cases/families with the phenotype(iii).
OR
B. There are plausible disease-causing mutations(i) within, affecting or encompassing cis-regulatory elements convincingly affecting the expression of a single gene identified in multiple (>3) unrelated cases/families with the phenotype(iii).
OR
C. As definitions A or B but in 2 or 3 unrelated cases/families with the phenotype, with the addition of convincing bioinformatic or functional evidence of causation e.g. known inborn error of metabolism with mutation in orthologous gene which is known to have the relevant deficient enzymatic activity in other species; existence of an animal model which recapitulates the human phenotype.
AND
D. Evidence indicates that disease-causing mutations follow a Mendelian pattern of causation appropriate for reporting in a diagnostic setting(iv).
AND
E. No convincing evidence exists or has emerged that contradicts the role of the gene in the specified phenotype.
(i)Plausible disease-causing mutations: Recurrent de novo mutations convincingly affecting gene function. Rare, fully-penetrant mutations - relevant genotype never, or very rarely, seen in controls. (ii) Interpretable functional region: ORF in protein coding genes miRNA stem or loop. (iii) Phenotype: the rare disease category, as described in the eligibility statement. (iv) Intermediate penetrance genes should not be included.
It’s assumed that loss-of-function variants in this gene can cause the disease/phenotype unless an exception to this rule is known. We would like to collect information regarding exceptions. An example exception is the PCSK9 gene, where loss-of-function variants are not relevant for a hypercholesterolemia phenotype as they are associated with increased LDL-cholesterol uptake via LDLR (PMID: 25911073).
If a curated set of known-pathogenic variants is available for this gene-phenotype, please contact us at panelapp@genomicsengland.co.uk
We classify loss-of-function variants as those with the following Sequence Ontology (SO) terms:
Term descriptions can be found on the PanelApp homepage and Ensembl.
If you are submitting this evaluation on behalf of a clinical laboratory please indicate whether you report variants in this gene as part of your current diagnostic practice by checking the box
Standardised terms were used to represent the gene-disease mode of inheritance, and were mapped to commonly used terms from the different sources. Below each of the terms is described, along with the equivalent commonly-used terms.
A variant on one allele of this gene can cause the disease, and imprinting has not been implicated.
A variant on the paternally-inherited allele of this gene can cause the disease, if the alternate allele is imprinted (function muted).
A variant on the maternally-inherited allele of this gene can cause the disease, if the alternate allele is imprinted (function muted).
A variant on one allele of this gene can cause the disease. This is the default used for autosomal dominant mode of inheritance where no knowledge of the imprinting status of the gene required to cause the disease is known. Mapped to the following commonly used terms from different sources: autosomal dominant, dominant, AD, DOMINANT.
A variant on both alleles of this gene is required to cause the disease. Mapped to the following commonly used terms from different sources: autosomal recessive, recessive, AR, RECESSIVE.
The disease can be caused by a variant on one or both alleles of this gene. Mapped to the following commonly used terms from different sources: autosomal recessive or autosomal dominant, recessive or dominant, AR/AD, AD/AR, DOMINANT/RECESSIVE, RECESSIVE/DOMINANT.
A variant on one allele of this gene can cause the disease, however a variant on both alleles of this gene can result in a more severe form of the disease/phenotype.
A variant in this gene can cause the disease in males as they have one X-chromosome allele, whereas a variant on both X-chromosome alleles is required to cause the disease in females. Mapped to the following commonly used term from different sources: X-linked recessive.
A variant in this gene can cause the disease in males as they have one X-chromosome allele. A variant on one allele of this gene may also cause the disease in females, though the disease/phenotype may be less severe and may have a later-onset than is seen in males. X-linked inactivation and mosaicism in different tissues complicate whether a female presents with the disease, and can change over their lifetime. This term is the default setting used for X-linked genes, where it is not known definitately whether females require a variant on each allele of this gene in order to be affected. Mapped to the following commonly used terms from different sources: X-linked dominant, x-linked, X-LINKED, X-linked.
The gene is in the mitochondrial genome and variants within this can cause this disease, maternally inherited. Mapped to the following commonly used term from different sources: Mitochondrial.
Mapped to the following commonly used terms from different sources: Unknown, NA, information not provided.
For example, if the mode of inheritance is digenic, please indicate this in the comments and which other gene is involved.