Mendeliome
Gene: PRDM13 Green List (high evidence)Green List (high evidence)
PMID: 35390279 - Biallelic variants identified in multiple individuals from four unrelated families with pontocerebellar hypoplasiaCreated: 5 May 2022, 1:20 a.m. | Last Modified: 5 May 2022, 1:20 a.m.
Panel Version: 0.13784
Mode of inheritance
BIALLELIC, autosomal or pseudoautosomal
Phenotypes
Pontocerebellar hypoplasia (MONDO:0020135); PRDM13 related
Publications
I don't know
Mode of inheritance
BIALLELIC, autosomal or pseudoautosomal
Phenotypes
intellectual disability, MONDO:0001071, PRDM13-associated; ataxia with cerebellar hypoplasia, MONDO:MONDO:0016054. PRDM13-associated; congenital hypogonadotropic hypogonadism, MONDO:0015770 Edit
Publications
Green List (high evidence)
Note only single family reported with Cerebellar dysfunction, impaired intellectual development, and hypogonadotropic hypogonadism, MIM# 61976 -- this likely lies on the same spectrum as Pontocerebellar hypoplasia, type 17, MIM# 619909 rather than being a distinct disorder.Created: 15 Jun 2022, 12:27 p.m. | Last Modified: 15 Jun 2022, 12:27 p.m.
Panel Version: 1.66
Comment when marking as ready: Bi-allelic variants: Recessive disease causing ID and DSD described in three reportedly unrelated families (2 consanguineous), but all are from Malta, and all share the same 13bp deletion spanning an exon-intron boundary. Mouse KO is embryonically lethal, and tissue specific KO failed to replicate many of the patients phenotypes, other than hypoplasia of the cerebellar vermis and hemispheres at P21.Created: 7 Jan 2022, 7:20 a.m. | Last Modified: 7 Jan 2022, 7:20 a.m.
Panel Version: 0.10564
8 individuals from three families reported with UPSTREAM NON-CODING variants in this gene.
Sources: LiteratureCreated: 18 Dec 2019, 12:03 a.m.
Mode of inheritance
BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Phenotypes
Retinal dystrophy; Chorioretinal atrophy, progressive bifocal, MIM# 600790; Pontocerebellar hypoplasia, type 17, MIM# 619909; Cerebellar dysfunction, impaired intellectual development, and hypogonadotropic hypogonadism, MIM# 61976
Publications
Mode of pathogenicity
Other
Phenotypes for gene: PRDM13 were changed from Chorioretinal atrophy, progressive bifocal, MIM# 600790; Cerebellar dysfunction, impaired intellectual development, and hypogonadotropic hypogonadism, MIM# 619761 to Chorioretinal atrophy, progressive bifocal, MIM# 600790; Pontocerebellar hypoplasia, type 17, MIM# 619909; Cerebellar dysfunction, impaired intellectual development, and hypogonadotropic hypogonadism, MIM# 61976
Publications for gene: PRDM13 were set to 30710461; 34730112; 35390279
Phenotypes for gene: PRDM13 were changed from Retinal dystrophy; Chorioretinal atrophy, progressive bifocal, MIM# 600790; intellectual disability, MONDO:0001071, PRDM13-associated; ataxia with cerebellar hypoplasia, MONDO:0016054, PRDM13-associated; congenital hypogonadotropic hypogonadism, MONDO:0015770 to Chorioretinal atrophy, progressive bifocal, MIM# 600790; Cerebellar dysfunction, impaired intellectual development, and hypogonadotropic hypogonadism, MIM# 619761
Phenotypes for gene: PRDM13 were changed from Retinal dystrophy; Chorioretinal atrophy, progressive bifocal, MIM# 600790; intellectual disability, MONDO:0001071, PRDM13-associated; ataxia with cerebellar hypoplasia, MONDO:0016054, PRDM13-associated; congenital hypogonadotropic hypogonadism, MONDO:0015770 to Retinal dystrophy; Chorioretinal atrophy, progressive bifocal, MIM# 600790; intellectual disability, MONDO:0001071, PRDM13-associated; ataxia with cerebellar hypoplasia, MONDO:0016054, PRDM13-associated; congenital hypogonadotropic hypogonadism, MONDO:0015770
Publications for gene: PRDM13 were set to 30710461; 34730112
Tag founder tag was added to gene: PRDM13.
Phenotypes for gene: PRDM13 were changed from Retinal dystrophy; Chorioretinal atrophy, progressive bifocal, MIM# 600790 to Retinal dystrophy; Chorioretinal atrophy, progressive bifocal, MIM# 600790; intellectual disability, MONDO:0001071, PRDM13-associated; ataxia with cerebellar hypoplasia, MONDO:0016054, PRDM13-associated; congenital hypogonadotropic hypogonadism, MONDO:0015770
Publications for gene: PRDM13 were set to 30710461
Mode of inheritance for gene: PRDM13 was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Gene: prdm13 has been classified as Green List (High Evidence).
Phenotypes for gene: PRDM13 were changed from Retinal dystrophy to Retinal dystrophy; Chorioretinal atrophy, progressive bifocal, MIM# 600790
Tag SV/CNV tag was added to gene: PRDM13. Tag 5'UTR tag was added to gene: PRDM13.
Gene: prdm13 has been classified as Green List (High Evidence).
Gene: prdm13 has been classified as Green List (High Evidence).
gene: PRDM13 was added gene: PRDM13 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: PRDM13 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: PRDM13 were set to 30710461 Phenotypes for gene: PRDM13 were set to Retinal dystrophy Mode of pathogenicity for gene: PRDM13 was set to Other Review for gene: PRDM13 was set to GREEN
If promoting or demoting a gene, please provide comments to justify a decision to move it.
Genes included in a Genomics England gene panel for a rare disease category (green list) should fit the criteria A-E outlined below.
These guidelines were developed as a combination of the ClinGen DEFINITIVE evidence for a causal role of the gene in the disease(a), and the Developmental Disorder Genotype-Phenotype (DDG2P) CONFIRMED DD Gene evidence level(b) (please see the original references provided below for full details). These help provide a guideline for expert reviewers when assessing whether a gene should be on the green or the red list of a panel.
A. There are plausible disease-causing mutations(i) within, affecting or encompassing an interpretable functional region(ii) of this gene identified in multiple (>3) unrelated cases/families with the phenotype(iii).
OR
B. There are plausible disease-causing mutations(i) within, affecting or encompassing cis-regulatory elements convincingly affecting the expression of a single gene identified in multiple (>3) unrelated cases/families with the phenotype(iii).
OR
C. As definitions A or B but in 2 or 3 unrelated cases/families with the phenotype, with the addition of convincing bioinformatic or functional evidence of causation e.g. known inborn error of metabolism with mutation in orthologous gene which is known to have the relevant deficient enzymatic activity in other species; existence of an animal model which recapitulates the human phenotype.
AND
D. Evidence indicates that disease-causing mutations follow a Mendelian pattern of causation appropriate for reporting in a diagnostic setting(iv).
AND
E. No convincing evidence exists or has emerged that contradicts the role of the gene in the specified phenotype.
(i)Plausible disease-causing mutations: Recurrent de novo mutations convincingly affecting gene function. Rare, fully-penetrant mutations - relevant genotype never, or very rarely, seen in controls. (ii) Interpretable functional region: ORF in protein coding genes miRNA stem or loop. (iii) Phenotype: the rare disease category, as described in the eligibility statement. (iv) Intermediate penetrance genes should not be included.
It’s assumed that loss-of-function variants in this gene can cause the disease/phenotype unless an exception to this rule is known. We would like to collect information regarding exceptions. An example exception is the PCSK9 gene, where loss-of-function variants are not relevant for a hypercholesterolemia phenotype as they are associated with increased LDL-cholesterol uptake via LDLR (PMID: 25911073).
If a curated set of known-pathogenic variants is available for this gene-phenotype, please contact us at panelapp@genomicsengland.co.uk
We classify loss-of-function variants as those with the following Sequence Ontology (SO) terms:
Term descriptions can be found on the PanelApp homepage and Ensembl.
If you are submitting this evaluation on behalf of a clinical laboratory please indicate whether you report variants in this gene as part of your current diagnostic practice by checking the box
Standardised terms were used to represent the gene-disease mode of inheritance, and were mapped to commonly used terms from the different sources. Below each of the terms is described, along with the equivalent commonly-used terms.
A variant on one allele of this gene can cause the disease, and imprinting has not been implicated.
A variant on the paternally-inherited allele of this gene can cause the disease, if the alternate allele is imprinted (function muted).
A variant on the maternally-inherited allele of this gene can cause the disease, if the alternate allele is imprinted (function muted).
A variant on one allele of this gene can cause the disease. This is the default used for autosomal dominant mode of inheritance where no knowledge of the imprinting status of the gene required to cause the disease is known. Mapped to the following commonly used terms from different sources: autosomal dominant, dominant, AD, DOMINANT.
A variant on both alleles of this gene is required to cause the disease. Mapped to the following commonly used terms from different sources: autosomal recessive, recessive, AR, RECESSIVE.
The disease can be caused by a variant on one or both alleles of this gene. Mapped to the following commonly used terms from different sources: autosomal recessive or autosomal dominant, recessive or dominant, AR/AD, AD/AR, DOMINANT/RECESSIVE, RECESSIVE/DOMINANT.
A variant on one allele of this gene can cause the disease, however a variant on both alleles of this gene can result in a more severe form of the disease/phenotype.
A variant in this gene can cause the disease in males as they have one X-chromosome allele, whereas a variant on both X-chromosome alleles is required to cause the disease in females. Mapped to the following commonly used term from different sources: X-linked recessive.
A variant in this gene can cause the disease in males as they have one X-chromosome allele. A variant on one allele of this gene may also cause the disease in females, though the disease/phenotype may be less severe and may have a later-onset than is seen in males. X-linked inactivation and mosaicism in different tissues complicate whether a female presents with the disease, and can change over their lifetime. This term is the default setting used for X-linked genes, where it is not known definitately whether females require a variant on each allele of this gene in order to be affected. Mapped to the following commonly used terms from different sources: X-linked dominant, x-linked, X-LINKED, X-linked.
The gene is in the mitochondrial genome and variants within this can cause this disease, maternally inherited. Mapped to the following commonly used term from different sources: Mitochondrial.
Mapped to the following commonly used terms from different sources: Unknown, NA, information not provided.
For example, if the mode of inheritance is digenic, please indicate this in the comments and which other gene is involved.